Danh mục tài liệu

Bài giảng Lý thuyết xác suất và thống kê toán - Nguyễn Quang Thi (ĐH Duy Tân)

Số trang: 136      Loại file: pdf      Dung lượng: 1.29 MB      Lượt xem: 16      Lượt tải: 0    
Xem trước 10 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài giảng Lý thuyết xác suất và thống kê toán có bố cục gồm 6 chương. Nội dung bài giảng trình bày các vấn đề về các khái niệm cơ bản trong xác suất, đại lượng ngẫu nhiên, hàm phân phối xác suất, các quy luật phân phối thường gặp, lí thuyết mẫu, lí thuyết ước lượng, kiểm định giả thiết thống kê và các bảng số. Mời bạn đọc tham khảo.


Nội dung trích xuất từ tài liệu:
Bài giảng Lý thuyết xác suất và thống kê toán - Nguyễn Quang Thi (ĐH Duy Tân) BỘ GIÁO DỤC VÀ ĐÀO TẠO KHOA KHOA HỌC TỰ NHIÊN ĐẠI HỌC DUY TÂN ===================== BÀI GIẢNG: LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN Biên soạn: Nguyễn Quang Thi Đà Nẵng, tháng 9 năm 2009 L im đ u Trong khoa học cũng như trong đời sống hàng ngày, chúng ta rất thường gặp các hiện tượng ngẫu nhiên (toán học gọi là biến cố ngẫu nhiên). Đó là các biến cố mà ta không thể dự báo một cách chắc chắn rằng chúng xảy ra hay không xảy ra. Lí thuyết xác suất là bộ môn toán học nghiên cứu nhằm tìm ra các quy luật chi phối và đưa ra các phương pháp tính toán xác suất của các hiện tượng ngẫu nhiên. Ngày nay lý thuyết xác suất đã trở thành một ngành toán học quan trọng cả về phương diện lý thuyết và ứng dụng. Nó là công cụ không thể thiếu được mỗi khi ta nói đến dự báo, bảo hiểm, mỗi khi cần đánh giá các cơ may, các nguy cơ rủi ro. Nhà toán học Pháp Laplace ở thế kỷ 19 đã tiên đoán rằng: ‘Môn khoa học này hứa hẹn trở thành một trong những đối tượng quan trọng nhất của tri thức nhân loại. Rất nhiều những vấn đề quan trọng nhất của đời sống thực tế thuộc về những bài toán của lý thuyết xác suất’. Lí thuyết xác suất và thống kê toán học là môn học cơ bản được giảng dạy ở hầu hết các trường Đại học. Ngoài tập bài giảng này ra, giảng viên khuyến khích sinh viên khi học môn học xác suất và thống kê nên có ít nhất 1 tài liệu khác để đọc thêm, bất cứ cuốn sách nào về xác suất thống kê có trên thị trường đều tốt. Nó sẽ bổ sung kiến thức cho bạn. Trong quá trình soạn bài giảng này, giảng viên đã tham khảo nhiều ý kiến của các đồng nghiệp, và giảng viên cũng cố gắng rất lớn trong quá trình biên soạn nhưng do hạn chế về nhiều mặt nên không thể tránh được sai sót. Rất mong nhận được sự phê bình và sự đóng góp ý kiến của các đồng nghiệp và các bạn sinh viên. Xin chân thành cảm ơn. Biên soạn: Nguyễn Quang Thi M cl c Lời mở đầu ....................................................................................................... 3 Mục lục ............................................................................................................. v Chương I. Các khái niệm cơ bản trong lí thuyết xác suất. ...................... 1 1. Nhắc lại một số công thức giải tích tổ hợp. ..........................................................1 1.1. Quy tắc cộng và quy tắc nhân........................................................................1 1.2. Hoán vị. ........................................................................................................2 1.3. Chỉnh hợp (chỉnh hợp không lặp). .................................................................2 1.4. Chỉnh hợp lặp................................................................................................2 1.5. Tổ hợp...........................................................................................................3 1.6. Công thức nhị thức Newton...........................................................................3 1.7. Bài tập...........................................................................................................3 2. Biến cố và các phép toán trên biến cố. .................................................................4 2.1. Phép thử và biến cố. ......................................................................................4 2.2. Các loại biến cố.............................................................................................4 2.3. Biến cố bằng nhau (biến cố tương đương). ....................................................5 2.4. Các phép toán trên biến cố. ...........................................................................5 2.5. Nhóm đầy đủ các biến cố. .............................................................................6 2.6. Bài tập...........................................................................................................6 3. Định nghĩa xác suất..............................................................................................7 3.1. Các định nghĩa xác suất.................................................................................7 3.2. Các định lí về xác suất...................................................................................9 3.3. Công thức xác suất đầy đủ. Công thức Bayes. .............................................13 3.4. Bài tập.........................................................................................................15 4. Dãy phép thử Bernoulli. Công thức Bernoulli. ...................................................15 4.1. Dãy phép thử Bernoulli. ..............................................................................15 4.2. Số có khả năng nhất. ...................................................................................16 5. Bài tập chương...................................................................................................19 Đáp số và hướng dẫn..........................................................................................21 Chương II. Đại lượng ngẫu nhiên. Hàm phân phối xác suất. ..................... 25 1. Khái niệm. Phân loại đại lượng ngẫu nhiên. .......................................................25 1.1. Đại lượng ngẫu nhiên rời rạc. ......................................................................26 1.2. Đại lượng ngẫu nhiên liên tục......................................................................26 1.3. Hàm phân phối của đại lượng ngẫu nhiên....................................................26 2. Đại lượng ngẫu nhiên rời rạc..............................................................................27 ...