Kiến thức:Củng cố: Khái niệm nguyên hàm của một hàm số. Các tính chất cơ bản của nguyên hàm. Bảng nguyên hàm của một số hàm số. Các phương pháp tính nguyên hàm.Kĩ năng: Tìm được nguyên hàm của một số hàm số đơn giản dựa vào bảng nguyên hàm và cách tính nguyên hàm từng phần.
Nội dung trích xuất từ tài liệu:
BÀI TẬP NGUYÊN HÀM Chương III: NGUYÊN HÀM – TÍCH PHÂN VÀ ỨNG DỤNG Bài 1 : BÀI TẬP NGUYÊN HÀMI. MỤC TIÊU: Củng cố: Kiến thức: Khái niệm nguyên hàm của một hàm số. Các tính ch ất cơ b ản của nguyên hàm. Bảng nguyên hàm của một số hàm số. Các phương pháp tính nguyên hàm. Kĩ năng: Tìm được nguyên hàm của một số hàm số đơn giản dựa vào bảng nguyên hàm và cách tính nguyên hàm từng phần. 1Giải tích 12 Trần Sĩ Tùng Sử dụng đư ợc các phương pháp tính nguyên hàm để tìm nguyên hàm của các hàm số đơn giản. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống.II. CHUẨN BỊ: Giáo viên: Giáo án. Bảng công thức đạo hàm và nguyên hàm. Học sinh: SGK, vở ghi. Ôn tập các công thức đạo h àm.III. HO ẠT ĐỘNG DẠY HỌC: 1 . Ổ n định tổ chức: Kiểm tra sĩ số lớp. 2 . Kiểm tra bài cũ: (Lồng vào quá trình luyện tập ) H. Đ. 2 3. Giảng bài mới:TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung10 Hoạt động 1: Củng cố khái niệm nguyên hàm H1. Nhắc lại định nghĩa Đ1. F(x) = f(x) 1 . Trong các cặp hàm số sau, nguyên hàm của một hàm h àm số nào là 1 nguyên hàm số? a) Cả 2 đều là nguyên hàm của hàm số còn lại: của nhau. a) e x và e x b ) sin 2 x là 1 nguyên hàm của sin2x b ) sin 2 x và sin 2 x 4 x 2 1 e là 1 nguyên c) 1 2 e x và 1 4 e x c) x x x 2 2 h àm của 1 e x x H2. Nhắc lại bảng nguyên Đ2. 2 . Tìm nguyên hàm của các hàm? h àm số sau: 5 7 2 3 6 3 a) 3 6 3 x x x C 4 7 2 x x 1 a) f ( x ) 3 x 3 Giải tích 12 Trần Sĩ Tùng 2x 1 2 x ln 2 1 b) f ( x ) b) C ex e x (ln 2 1) c) f ( x) sin 5 x.cos 3x 11 c) cos8 x cos 2 x C 3 4 Hướng dẫn cách phân tích 1 d) f ( x ) phân thức. (1 x)(1 2 x) 1 1 x d) C ln 3 1 2x 1 1 1 2 (1 x)(1 2 x) 3 1 x 1 2 x 15 Hoạt động 2: Luyện tập phương pháp đổi biến số H1. Nêu công thức đổi biến Đ1. 3. Sử dụng phương pháp đổi biến, hãy tính: ? a) t = 1 – x A = a) (1 x )9 dx (1 x)10 C 10 3 b) x(1 x 2 ) 2 dx ...
BÀI TẬP NGUYÊN HÀM
Số trang: 8
Loại file: pdf
Dung lượng: 144.51 KB
Lượt xem: 17
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tìm kiếm theo từ khóa liên quan:
giải tích 12 tài liệu giải tích 12 giáo án giải tích 12 bải giảng giải tích 12 lý thuyết giải tích 12Tài liệu có liên quan:
-
35 trang 55 0 0
-
595 bài tập tự luận và trắc nghiệm Giải tích 12: Phần 1
128 trang 33 0 0 -
Giáo án Giải tích 12: Hàm số lũy thừa
11 trang 33 0 0 -
3 trang 28 0 0
-
Giáo án Giải tích 12 - Bài 1: Nguyên hàm
51 trang 26 0 0 -
Bài giảng Giải tích 12 - Bài tập: Nguyên hàm
12 trang 25 0 0 -
7 trang 25 0 0
-
Giáo án Hình học 12: Khái niệm mặt tròn xoay
9 trang 24 0 0 -
TÍCH PHÂN (Phương pháp & Bài tập có lời giải )
20 trang 24 0 0 -
3 trang 23 0 0