Danh mục tài liệu

BTVN ngày 10.03: hình cầu trong HHGT không gian (Có hướng dẫn giải)

Số trang: 9      Loại file: doc      Dung lượng: 550.50 KB      Lượt xem: 13      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu btvn ngày 10.03: hình cầu trong hhgt không gian (có hướng dẫn giải), tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
BTVN ngày 10.03: hình cầu trong HHGT không gian (Có hướng dẫn giải) TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BTVN NGÀY 10-03 Hình cầu Trong HHGT không gian. Bài 1: Trong hệ trục tọa độ Oxyz cho mp (α ) :2 x + y − 2 z + 15 = 0 và điểm J(-1;-2;1). Gọi I là điểm đối xứng của J qua (α ) . Viết phương trình mặt cầu tâm I, biết nó cắt (α ) theo một đường tròn có chu vi là 8π. Bài 2: Tìm tập hợp tâm các mặt cầu đi qua gốc tọa độ và tiếp xúc với 2 mặt phẳng có phương trình lần lượt là: (P): x+2y-4=0 và (Q): x+2y+6=0 Bài 3: Trong KG cho mặt cầu (S) đi qua 4 điểm: A(0;0;1), B(1;0;0), C(1;1;1), D(0;1;0) 1 1 1 Và mặt cầu (S’) đi qua 4 điểm: A ( ;0;0), B (0; ; ), C (1;1;0), D (0;1;1) . 2 2 2 Tìm độ dài bán kính đường tròn giao tuyến của 2 mặt cầu đó. Bài 4: Trong hệ trục TĐ Oxyz cho 2 đường thẳng có PT: x = t  x = 5 − 2s   ( d1 ) :  y = −t và ( d 2 ) :  y = −2 z = 0 z = s   Viết phương trình mặt cầu (S) có tâm I thuộc d1 và I cách d2 một khoảng bằng 3.Biết rằng mặt cầu (S) có bán kính bằng 5. Bài 5: Trong hệ trục TĐ Oxyz cho 2 điểm: A(0;-1;1) và B( 1;2;1) . Viết PT mặt cầu (S) có đường kính là đoạn vuông góc chung của đường thẳng AD và đường thẳng chứ trục Ox. ………………….Hết………………… BT Viên môn Toán hocmai.vn Hocmai.vn – Ngôi trường chung của học trò Việt 1 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Trịnh Hào Quang Page 2 of 9 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HƯỚNG DẪN GIẢI BTVN BG SỐ 6 Hình Cầu.• NGÀY 12.03Bài 1: Cho tứ diện ABCD có AB=CD=c; AC=BD=b; AD=BC=c. Tính diện tích mặt cầungoại tiếp tứ diện. Giải: Gọi M, N lần lượt là trung điểm của BC và AD. Vì ∆ABC = ∆DBC ⇒ AM = DM ⇒ MN ⊥ AD . Tương tự: MN ⊥ BC Vậy MN là đoạn vuông góc chung của AD và BC. Hay MN là đường trung trựccủa AD và BC.  Tâm mặt cầu ngoại tiếp tứ diện sẽ là trung điểm của MN. b2 + c2 a 2 b2 + c2 − a 2 Ta có: AM = DM = − ⇒ MN = AM 2 − AN 2 = 2 4 2 MN 2 1 a 2 + b 2 + c 2 ⇒ R = OA = AN + ( 2 ) = 2 2 2 Vậy: 1 a 2 + b2 + c 2 π 2 S = 4π R = 4π . . 2 = (a + b 2 + c 2 ) 4 2 2Bài 2: Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đáy và cạnh bên đều bằnga. Gọi A’, B’, C’, D’lần lượt là trung điểm của SA,SB,SC,SD. a) CMR: Các điểm A,B,C,D,A’,B’,C’,D’ cùng thuộc một mặt cầu (C). b) Tính bán kính mặt cầu này. Giải: a) Gọi O, O’ lần lượt là tâm các hình vuông ABCD, A’B’C’D’. Khi đó OO ⊥ ( ABCD) và OO ⊥ ( A B C D ) và OO’ là trục đường tròn ngoại tiếp các Page 3 of 9 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 hình vuông ấy. ⇒ Tâm I của hình cầu cần tìm thuộc OO’ và nằm ngoài OO’. Đặt: a 2 2 a 2 2 OI = x. Do IA2 = IA 2 ⇒ OI 2 + OA2 = OI 2 + OA 2 ⇔ x 2 + ( ) =( ) + ( x + OO ) 2 ; 2 4 ...