
Building Web Reputation Systems- P24
Số trang: 8
Loại file: pdf
Dung lượng: 301.99 KB
Lượt xem: 7
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Building Web Reputation Systems- P24:Today’s Web is the product of over a billion hands and minds. Around the clock andaround the globe, people are pumping out contributions small and large: full-lengthfeatures on Vimeo, video shorts on YouTube, comments on Blogger, discussions onYahoo! Groups, and tagged-and-titled Del.icio.us bookmarks. User-generated contentand robust crowd participation have become the hallmarks of Web 2.0.
Nội dung trích xuất từ tài liệu:
Building Web Reputation Systems- P24K Mkarma, ix, 176 market norms, incentives and, 111 abuse reporters on Yahoo! Answers, 257 mastery incentives, 119 authors on Yahoo! Answers, 260 media uploads, 42 caveats, 177 messages, 46 complexity of, 176 routing, 54–55 display examples, 180–192 messaging displaying sparingly, 177 invisible reputation framework, 288 eBay seller feedback karma, 78–82 optimistic versus request-reply, 286 generating inferred karma, 159–161 Yahoo! Reputation Platform, 292 inferred karma in Yahoo! Answers, 263 messaging dispatcher, Yahoo! Reputation negative public karma, 161 Platform, 294 rating the content, not the person, 135 metadata, 179 Slashdot, 177 mixers, 51 user as target, 25 models (see reputation models)karma models, 72 moderation, incentives for (see incentives) abuse of, 77 motivation (see incentives) participation karma, 73 participation points, 155 quality karma, 73 N named levels in reputation display, 188 ratings-and-reviews with karma, 75–78 negative public karma, 161 robust karma, 74 Sims Online game, 162know-it-all incentives, 114 negative reputation systems, 17 normalization, 53L power and costs of, 57leaderboards, 190 normalized scores, 25, 178 content showcases and, 201 display as percentages, 180 discouraging new contributors, 63 normalized values, 44 harmful effects of, 194–196 numbered levels in reputation display, 186 top-X, 192 use with egocentric incentives, 119legal issues and content removal by staff, 109 O objects in reputation systems, 125–131Level of Activity, 30 application architecture, 125–129levels in reputation display, 185–189 performing application audit, 127 named levels, 188 reputable entities, 129–131 numbered levels, 186 what the application does, 126LinkedIn Yahoo! Answers community content completeness of profiles, 212 moderation, 252 user profile with group affiliations, 216 operator overrides, 134liquidity compensation algorithm, 59 opinionated incentives, 114lists, 200 optimistic messaging, 286 (see also ranked lists) Yahoo! Reputation Platform, 292 emergent effect on Delicious, 237 Orkut, 195 rank-order items in, 199 reputation display, 169local reputation, 8 output, 56logging, 57 automating simulated reputation outputloyalty, establishing, 100 events, 229 implementing, 226 Index | 311P of content, 13 emphasizing over simple activity, 135participation incentives (see incentives) enforcing minimum editorial quality, 109participation karma model, 73 Flickr interestingness scores for, 82–89participation points, 182 improving content quality, 102 generating, 155 incentives for (see incentives)patents, 305 measurement of, leaderboards and, 194pay-it-forward incentives, 114 simple karma model, 73people show ...
Nội dung trích xuất từ tài liệu:
Building Web Reputation Systems- P24K Mkarma, ix, 176 market norms, incentives and, 111 abuse reporters on Yahoo! Answers, 257 mastery incentives, 119 authors on Yahoo! Answers, 260 media uploads, 42 caveats, 177 messages, 46 complexity of, 176 routing, 54–55 display examples, 180–192 messaging displaying sparingly, 177 invisible reputation framework, 288 eBay seller feedback karma, 78–82 optimistic versus request-reply, 286 generating inferred karma, 159–161 Yahoo! Reputation Platform, 292 inferred karma in Yahoo! Answers, 263 messaging dispatcher, Yahoo! Reputation negative public karma, 161 Platform, 294 rating the content, not the person, 135 metadata, 179 Slashdot, 177 mixers, 51 user as target, 25 models (see reputation models)karma models, 72 moderation, incentives for (see incentives) abuse of, 77 motivation (see incentives) participation karma, 73 participation points, 155 quality karma, 73 N named levels in reputation display, 188 ratings-and-reviews with karma, 75–78 negative public karma, 161 robust karma, 74 Sims Online game, 162know-it-all incentives, 114 negative reputation systems, 17 normalization, 53L power and costs of, 57leaderboards, 190 normalized scores, 25, 178 content showcases and, 201 display as percentages, 180 discouraging new contributors, 63 normalized values, 44 harmful effects of, 194–196 numbered levels in reputation display, 186 top-X, 192 use with egocentric incentives, 119legal issues and content removal by staff, 109 O objects in reputation systems, 125–131Level of Activity, 30 application architecture, 125–129levels in reputation display, 185–189 performing application audit, 127 named levels, 188 reputable entities, 129–131 numbered levels, 186 what the application does, 126LinkedIn Yahoo! Answers community content completeness of profiles, 212 moderation, 252 user profile with group affiliations, 216 operator overrides, 134liquidity compensation algorithm, 59 opinionated incentives, 114lists, 200 optimistic messaging, 286 (see also ranked lists) Yahoo! Reputation Platform, 292 emergent effect on Delicious, 237 Orkut, 195 rank-order items in, 199 reputation display, 169local reputation, 8 output, 56logging, 57 automating simulated reputation outputloyalty, establishing, 100 events, 229 implementing, 226 Index | 311P of content, 13 emphasizing over simple activity, 135participation incentives (see incentives) enforcing minimum editorial quality, 109participation karma model, 73 Flickr interestingness scores for, 82–89participation points, 182 improving content quality, 102 generating, 155 incentives for (see incentives)patents, 305 measurement of, leaderboards and, 194pay-it-forward incentives, 114 simple karma model, 73people show ...
Tìm kiếm theo từ khóa liên quan:
nhập môn lập trình kỹ thuật lập trình lập trình flash lập trình web ngôn ngữ html lập trình hướng đối tượngTài liệu có liên quan:
-
Đề cương chi tiết học phần Cấu trúc dữ liệu và giải thuật (Data structures and algorithms)
10 trang 358 0 0 -
Giáo trình Lập trình hướng đối tượng: Phần 2
154 trang 313 0 0 -
Kỹ thuật lập trình trên Visual Basic 2005
148 trang 307 0 0 -
NGÂN HÀNG CÂU HỎI TRẮC NGHIỆM THIẾT KẾ WEB
8 trang 247 0 0 -
Giới thiệu môn học Ngôn ngữ lập trình C++
5 trang 222 0 0 -
101 trang 211 1 0
-
Bài giảng Nhập môn về lập trình - Chương 1: Giới thiệu về máy tính và lập trình
30 trang 188 0 0 -
Luận văn tốt nghiệp Công nghệ thông tin: Xây dựng website bán hàng nông sản
67 trang 177 0 0 -
Luận văn: Nghiên cứu kỹ thuật giấu tin trong ảnh Gif
33 trang 159 0 0 -
Giáo trình nhập môn lập trình - Phần 22
48 trang 143 0 0