CHUỖI LŨY THỪA
Số trang: 31
Loại file: ppt
Dung lượng: 1.27 MB
Lượt xem: 18
Lượt tải: 0
Xem trước 4 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Trong đa số các trường hợp sử dụng, các biểu thức trong chuỗi có thể được xây dựng bằng các công thức hay thuật toán hay thậm chí bằng số ngẫu nhiên.Chuỗi có thể hữu hạn, có số các biểu thức là hữu hạn, hay vô hạn, có số lượng các biểu thức dài vô hạn. Chuỗi hữu hạn có thể được xử lý bằng các phép tính đại số sơ cấp. Trong khi đó các chuỗi vô hạn cần các công cụ giải tích trong các ứng dụng toán học.Trong giải tích thường phân chia chuỗi thành chuỗi số...
Nội dung trích xuất từ tài liệu:
CHUỖI LŨY THỪA IV. CHUỖI LŨY THỪA1.Định nghĩa ∞ Chuỗi lũy thừa là chuỗi có dạng ∑ n =1 n an(x − x0) Bằng phép biến đổi X = ( x − x0 ) ∞ ta đưa chuỗi trên về dạng ∑a X n =1 n n Do đó các kết quả về chuỗi lũy thừa chỉ cần xét cho ∞ trường hợp chuỗi có dạng ∑ n =1 an x n ∞ Rõ ràng chuỗi ∑a x n =1 n n hội tụ tại x =02. Định nghĩa bán kính hội tụ của chuỗi lũy thừa. ∞ ∗ Số R > 0 sao cho chuỗi lũy thừa ∑ n =1 n an x hội tụ với mọi x : x < R và phân kỳ với mọi x : x > Rđược gọi là bán kính hội tụ của chuỗi. ∗ Khoảng (-R, R) được gọi là khoảng hội tụ của ∞ chuỗi lũy thừa ∑ n =1 an xn2. Định nghĩa bán kính hội tụ của chuỗi lũy thừa (tt). ∞ ∗Nếu chuỗi lũy thừa ∑ n =1 an xn hội tụ ∀x ∈ R ta cho R = +∝ . ∞ ∗Nếu chuỗi lũy thừa ∑ n =1 an x n phân kỳ ∀x ≠ 0 ta cho R = 0.3. Cách tìm bán kính hội tụ của chuỗi lũy thừa. an+1a) Định lý Abel: Giả sử lim n →∞ a = ρ n ∞ Khi đó bán kính hội tụ của chuỗi lũy thừa ∑ n =1 n an x 0 , ρ =+∞ 1 là: R = , 0< ρ 3. Cách tìm bán kính hội tụ của chuỗi lũy thừa (tt).b. Định lý Cauchy: Giả sử lim n an = ρ n→∞ ∞ khi đó bán kính hội tụ của chuỗi lũy thừa ∑ n =1 an xn 0 , ρ = + ∞ 1 là: R = , 0< ρ 3. Cách tìm bán kính hội tụ của chuỗi lũy thừa (tt). ∗Bước 1: Ta dựa vào hai định lý trên để tìm bán kính hội tụ R. ∗Bước 2: Khoảng hội tụ của chuỗi lũy thừa này là: -R < x < R ∗Bước 3: Xét sự hội tụ của chuỗi tại các đầu mút của khoảng hội tụ. Từ đó ta sẽ có được miền hội tụ của chuỗi lũy thừa ∞ ∑n a x n =1 n4. Một số ví dụ: ∞ n VD1 Tìm miền hội tụ của chuỗi lũy thừa ∑ x n =1 n 1 an+1 n Ta có: an = ⇒ = →1 n an n + 1 V ậy R = 1 ∗ Khoảng hội tụ của chuỗi là -1 4. Một số ví dụ - VD 1(tt): ∞ n1 Tại x = -1 ta có chuỗi ∑ (−1) n =1 n hội tụ theo tiêu chuẩn Leibnitz. Vậy miền hội tụ của chuỗi là -1 ≤ x 4. Một số ví dụ - VD2(tt): Ta có: an = 1 n ⇒ n an = n1 → 1 n.3 3 n 3 Vậy R=3 ∗Khoảng hội tụ của chuỗi là - 3 < X < 3 ⇔ - 3 < ( x + 2) < 3 ⇔ - 5 < x 4. Một số ví dụ - VD2(tt): ∗Xét sự hội tụ của chuỗi tại 2 đầu mút x = -5 và x = 1: ∞ n1 Tại x = -5 ta có chuỗi ∑ n =1 (−1) n hội tụ. ∞ 1 Tại x = 1 ta có chuỗi ∑ n =1 n phân kỳ. Vậy miền hội tụ của chuỗi là: -5 ≤ x 4. Một số ví dụ (tt): ∞ 2n xVD3: Tìm miền hội tụ của chuỗi ∑ n =1 n.9 n ∞ Đặt X=x 2 , chuỗi ban đầu trở thành ∑a X n =1 n n 1 an = n Ta có: n.9 n an = n1 →1 9 n 9 Vậy R=94. Một số ví dụ - VD3(tt): ∗Khoảng hội tụ của chuỗi là 2 x < 3⇔ -3< x < 3 ∗Xét sự hội tụ của chuỗi tại 2 đầu mút x=± 3: ∞ Tại x = ± 3 ta có chuỗi ∑ 1 phân kỳ. n =1 ...
Nội dung trích xuất từ tài liệu:
CHUỖI LŨY THỪA IV. CHUỖI LŨY THỪA1.Định nghĩa ∞ Chuỗi lũy thừa là chuỗi có dạng ∑ n =1 n an(x − x0) Bằng phép biến đổi X = ( x − x0 ) ∞ ta đưa chuỗi trên về dạng ∑a X n =1 n n Do đó các kết quả về chuỗi lũy thừa chỉ cần xét cho ∞ trường hợp chuỗi có dạng ∑ n =1 an x n ∞ Rõ ràng chuỗi ∑a x n =1 n n hội tụ tại x =02. Định nghĩa bán kính hội tụ của chuỗi lũy thừa. ∞ ∗ Số R > 0 sao cho chuỗi lũy thừa ∑ n =1 n an x hội tụ với mọi x : x < R và phân kỳ với mọi x : x > Rđược gọi là bán kính hội tụ của chuỗi. ∗ Khoảng (-R, R) được gọi là khoảng hội tụ của ∞ chuỗi lũy thừa ∑ n =1 an xn2. Định nghĩa bán kính hội tụ của chuỗi lũy thừa (tt). ∞ ∗Nếu chuỗi lũy thừa ∑ n =1 an xn hội tụ ∀x ∈ R ta cho R = +∝ . ∞ ∗Nếu chuỗi lũy thừa ∑ n =1 an x n phân kỳ ∀x ≠ 0 ta cho R = 0.3. Cách tìm bán kính hội tụ của chuỗi lũy thừa. an+1a) Định lý Abel: Giả sử lim n →∞ a = ρ n ∞ Khi đó bán kính hội tụ của chuỗi lũy thừa ∑ n =1 n an x 0 , ρ =+∞ 1 là: R = , 0< ρ 3. Cách tìm bán kính hội tụ của chuỗi lũy thừa (tt).b. Định lý Cauchy: Giả sử lim n an = ρ n→∞ ∞ khi đó bán kính hội tụ của chuỗi lũy thừa ∑ n =1 an xn 0 , ρ = + ∞ 1 là: R = , 0< ρ 3. Cách tìm bán kính hội tụ của chuỗi lũy thừa (tt). ∗Bước 1: Ta dựa vào hai định lý trên để tìm bán kính hội tụ R. ∗Bước 2: Khoảng hội tụ của chuỗi lũy thừa này là: -R < x < R ∗Bước 3: Xét sự hội tụ của chuỗi tại các đầu mút của khoảng hội tụ. Từ đó ta sẽ có được miền hội tụ của chuỗi lũy thừa ∞ ∑n a x n =1 n4. Một số ví dụ: ∞ n VD1 Tìm miền hội tụ của chuỗi lũy thừa ∑ x n =1 n 1 an+1 n Ta có: an = ⇒ = →1 n an n + 1 V ậy R = 1 ∗ Khoảng hội tụ của chuỗi là -1 4. Một số ví dụ - VD 1(tt): ∞ n1 Tại x = -1 ta có chuỗi ∑ (−1) n =1 n hội tụ theo tiêu chuẩn Leibnitz. Vậy miền hội tụ của chuỗi là -1 ≤ x 4. Một số ví dụ - VD2(tt): Ta có: an = 1 n ⇒ n an = n1 → 1 n.3 3 n 3 Vậy R=3 ∗Khoảng hội tụ của chuỗi là - 3 < X < 3 ⇔ - 3 < ( x + 2) < 3 ⇔ - 5 < x 4. Một số ví dụ - VD2(tt): ∗Xét sự hội tụ của chuỗi tại 2 đầu mút x = -5 và x = 1: ∞ n1 Tại x = -5 ta có chuỗi ∑ n =1 (−1) n hội tụ. ∞ 1 Tại x = 1 ta có chuỗi ∑ n =1 n phân kỳ. Vậy miền hội tụ của chuỗi là: -5 ≤ x 4. Một số ví dụ (tt): ∞ 2n xVD3: Tìm miền hội tụ của chuỗi ∑ n =1 n.9 n ∞ Đặt X=x 2 , chuỗi ban đầu trở thành ∑a X n =1 n n 1 an = n Ta có: n.9 n an = n1 →1 9 n 9 Vậy R=94. Một số ví dụ - VD3(tt): ∗Khoảng hội tụ của chuỗi là 2 x < 3⇔ -3< x < 3 ∗Xét sự hội tụ của chuỗi tại 2 đầu mút x=± 3: ∞ Tại x = ± 3 ta có chuỗi ∑ 1 phân kỳ. n =1 ...
Tìm kiếm theo từ khóa liên quan:
chuỗi lũy thừa toán cao cấp khoa học cơ bản toán đại cương chuỗi hội tụTài liệu có liên quan:
-
Hướng dẫn giải bài tập Đại số tuyến tính: Phần 1
106 trang 263 0 0 -
Hình thành hệ thống điều khiển trình tự xử lý các toán tử trong một biểu thức logic
50 trang 203 0 0 -
4 trang 104 0 0
-
Giáo trình Toán học cao cấp (tập 2) - NXB Giáo dục
213 trang 98 0 0 -
Bài giảng Toán cao cấp - Chương 1: Các khái niệm cơ bản của lý thuyết xác suất
16 trang 88 0 0 -
Giáo trình Toán kinh tế: Phần 2
60 trang 75 0 0 -
BÀI TẬP TỔNG HỢP - QUY HOẠCH TUYẾN TÍNH
3 trang 74 0 0 -
Đề thi và đáp án môn: Toán cao cấp A1
3 trang 68 0 0 -
180 trang 61 0 0
-
Đề thi kết thúc môn Toán cao cấp năm 2020-2021
8 trang 59 0 0
Tài liệu mới:
-
Đề thi giữa học kì 2 môn Tin học lớp 11 năm 2022-2023 - Trường THPT Vĩnh Bảo, Hải Phòng
3 trang 0 0 0 -
3 trang 1 0 0
-
giáo án vật lý 11 - định luật ôm đối với các loại mạch điện
5 trang 1 0 0 -
Đề thi thử THPT Quốc gia năm học 2017 - 2018 môn Toán - Trường THPT Chuyên Bắc Ninh - Mã đề 601
6 trang 1 0 0 -
Đề thi thử tốt nghiệp THPT môn Địa lí - THPT chuyên Nguyễn Bỉnh Khiêm
4 trang 1 0 0