Chuyên đề Hàm số lượng giác và phương trình lượng giác
Số trang: 36
Loại file: pdf
Dung lượng: 476.12 KB
Lượt xem: 17
Lượt tải: 0
Xem trước 4 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tài liệu cung cấp những kiến thức, bài tập vận dụng về hàm số lượng giác; phương trình lượng giác cơ bản; một số phương trình lượng giác thường gặp; một số phương pháp giải phương trình lượng giác.
Nội dung trích xuất từ tài liệu:
Chuyên đề Hàm số lượng giác và phương trình lượng giác MỤC LỤC MỤC LỤCCHƯƠNG 1 HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC 1 1. HÀM SỐ LƯỢNG GIÁC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A KIẾN THỨC CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Dạng 1. Tìm tập xác định của hàm số lượng giác . . . . . . . . . . . . . . . . . . . . . . . 2 Dạng 2. Tính chẵn lẻ của hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Dạng 3. Tìm giá trị lớn nhất - giá trị nhỏ nhất . . . . . . . . . . . . . . . . . . . . . . . . . 4 C BÀI TẬP TRẮC NGHIỆM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 A KIẾN THỨC CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Dạng 1. Giải các phương trình lượng giác cơ bản . . . . . . . . . . . . . . . . . . . . . . . 10 Dạng 2. Giải các phương trình lượng giác dạng mở rộng . . . . . . . . . . . . . . . . 11 Dạng 3. Giải các phương trình lượng giác có điều kiện xác định . . . . . . . . . . 11 Dạng 4. Giải các phương trình lượng giác trên khoảng (a; b) cho trước . . . 11 C BÀI TẬP TRẮC NGHIỆM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3. MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP . . . . . . . . . . . . . . . . . . . . . . . 15 A KIẾN THỨC CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Dạng 1. Giải phương trình bậc nhất đối với một hàm số lượng giác . . . . . . 16 Dạng 2. Giải phương trình bậc hai đối với một hàm số lượng giác . . . . . . . . 17 Dạng 3. Giải phương trình bậc nhất đối với sinx và cosx . . . . . . . . . . . . . . . . . 17 Dạng 4. Phương trình đẳng cấp bậc hai đối với sinx và cosx . . . . . . . . . . . . . 18 Dạng 5. Phương trình chứa sin x ± cos x và sin x · cos x . . . . . . . . . . . . . . . . . . . 19 C BÀI TẬP TRẮC NGHIỆM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4. MỘT SỐ PHƯƠNG PHÁP GIẢI PT LƯỢNG GIÁC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Dạng 1. Biến đổi đưa phương trình về dạng phương trình bậc hai (ba) đối với một hàm số lượng giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Dạng 2. Biến đổi asinx + bcosx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Dạng 3. Biến đổi đưa về phương trình tích . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Dạng 4. Một số bài toán biện luận theo tham số . . . . . . . . . . . . . . . . . . . . . . . 25 B BÀI TẬP TỰ LUYỆN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5. ĐỀ ÔN TẬP CUỐI CHƯƠNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
Nội dung trích xuất từ tài liệu:
Chuyên đề Hàm số lượng giác và phương trình lượng giác MỤC LỤC MỤC LỤCCHƯƠNG 1 HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC 1 1. HÀM SỐ LƯỢNG GIÁC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A KIẾN THỨC CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Dạng 1. Tìm tập xác định của hàm số lượng giác . . . . . . . . . . . . . . . . . . . . . . . 2 Dạng 2. Tính chẵn lẻ của hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Dạng 3. Tìm giá trị lớn nhất - giá trị nhỏ nhất . . . . . . . . . . . . . . . . . . . . . . . . . 4 C BÀI TẬP TRẮC NGHIỆM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 A KIẾN THỨC CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Dạng 1. Giải các phương trình lượng giác cơ bản . . . . . . . . . . . . . . . . . . . . . . . 10 Dạng 2. Giải các phương trình lượng giác dạng mở rộng . . . . . . . . . . . . . . . . 11 Dạng 3. Giải các phương trình lượng giác có điều kiện xác định . . . . . . . . . . 11 Dạng 4. Giải các phương trình lượng giác trên khoảng (a; b) cho trước . . . 11 C BÀI TẬP TRẮC NGHIỆM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3. MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP . . . . . . . . . . . . . . . . . . . . . . . 15 A KIẾN THỨC CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Dạng 1. Giải phương trình bậc nhất đối với một hàm số lượng giác . . . . . . 16 Dạng 2. Giải phương trình bậc hai đối với một hàm số lượng giác . . . . . . . . 17 Dạng 3. Giải phương trình bậc nhất đối với sinx và cosx . . . . . . . . . . . . . . . . . 17 Dạng 4. Phương trình đẳng cấp bậc hai đối với sinx và cosx . . . . . . . . . . . . . 18 Dạng 5. Phương trình chứa sin x ± cos x và sin x · cos x . . . . . . . . . . . . . . . . . . . 19 C BÀI TẬP TRẮC NGHIỆM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4. MỘT SỐ PHƯƠNG PHÁP GIẢI PT LƯỢNG GIÁC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Dạng 1. Biến đổi đưa phương trình về dạng phương trình bậc hai (ba) đối với một hàm số lượng giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Dạng 2. Biến đổi asinx + bcosx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Dạng 3. Biến đổi đưa về phương trình tích . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Dạng 4. Một số bài toán biện luận theo tham số . . . . . . . . . . . . . . . . . . . . . . . 25 B BÀI TẬP TỰ LUYỆN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5. ĐỀ ÔN TẬP CUỐI CHƯƠNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
Tìm kiếm theo từ khóa liên quan:
Hàm số lượng giác Phương trình lượng giác Phương trình lượng giác cơ bản Bài tập phương trình lượng giác Tính chẵn lẻ của hàm sốTài liệu có liên quan:
-
Khai phóng năng lực Toán lớp 11 - Nguyễn Hoàng Thanh
104 trang 147 0 0 -
Tổng hợp trắc nghiệm Toán 11 toàn tập đầy đủ các chủ đề hay
536 trang 63 0 0 -
17 trang 58 0 0
-
24 trang 54 0 0
-
Giáo án môn Toán lớp 11 (Sách Chân trời sáng tạo)
506 trang 51 0 0 -
Đề cương ôn tập giữa học kì 1 môn Toán lớp 11 năm 2022-2023 - Trường THPT Nguyễn Huệ, Quảng Nam
7 trang 46 0 0 -
Tài liệu Phương trình lượng giác
54 trang 46 0 0 -
Nội dung ôn tập học kì 1 môn Toán lớp 11 năm 2023-2024 - Trường THPT Trần Phú - Hoàn Kiếm
17 trang 45 0 0 -
Đề cương ôn tập giữa học kì 1 môn Toán lớp 11 năm 2023-2024 - Trường THPT Việt Đức, Hà Nội
12 trang 45 0 0 -
Bài giảng Đại số lớp 11 bài 1: Hàm số lượng giác
22 trang 45 0 0