Đề thi HSG môn Toán lớp 12 năm 2019-2020 - Sở GD&ĐT Hưng Yên
Thông tin tài liệu:
Nội dung trích xuất từ tài liệu:
Đề thi HSG môn Toán lớp 12 năm 2019-2020 - Sở GD&ĐT Hưng Yên SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI THPT CẤP TỈNH HƯNG YÊN NĂM HỌC 2019 - 2020 Môn thi: TOÁN ĐỀ THI CHÍNH THỨC Thời gian làm bài 180 phút (không kể thời gian phát đề)Câu I (6,0 điểm). 1. Cho hàm số y x 3 mx 2 1 có đồ thị C m . Tìm các giá trị của tham số m để đường thẳng d : y 1 x cắt đồ thị C m tại 3 điểm phân biệt sao cho tiếp tuyến của đồ thị C m tại hai trong ba điểm đó vuông góc với nhau. x 1 2 2. Cho hàm số y có đồ thị C . Gọi A x 1; y1 , B x 2 ; y2 là các điểm cực trị của C x 2 với x 1 x 2 . Tìm điểm M trên trục tung sao cho T 2MA2 MB 2 2MA MB đạt giá trị nhỏ nhất.Câu II (4,0 điểm). 1 1. Giải phương trình: log 2 1 3 2x 2 log32 3 2x 1 . 2. Cho các số thực a, b, c 2; 8 và thỏa mãn điều kiện abc 64 . Tìm giá trị lớn nhất của biểu thức P log22 a log22 b log22 c .Câu III (5,0 điểm). 1. Cho hình chóp S.ABCD có ABCD là hình thang cân với AD 2a, AB BC CD a , cạnh SA vuông góc với đáy. Gọi M là trung điểm của SB và N là điểm thuộc đoạn SD sao cho 6a 43 NS 2ND . Biết khoảng cách từ S đến mặt phẳng (AMN) bằng , tính thể tích của khối 43 chóp S.ABCD theo a. 2. Cho tam giác ABC vuông tại A có ABC 60o . Đường phân giác của góc ABC cắt AC tại I. Trên nửa mặt phẳng bờ là đường thẳng AC, vẽ nửa đường tròn tâm I tiếp xúc với cạnh BC. Cho miền tam giác ABC và nửa hình tròn trên quay quanh trục AC tạo thành các khối tròn xoay V có thể tích lần lượt là V1,V2 . Tính tỉ số 1 . V2 ln x 1Câu IV (1,0 điểm). Tìm họ nguyên hàm I x ln x 1 1 dx . x 2 y 2 7y 3x 8 Câu V (2,0 điểm). Giải hệ phương trình 3 . 3xy 8x 5 xy 2 6x 2 12y 7 a1 1 Câu VI (2,0 điểm). Cho dãy an xác định . Tìm số hạng tổng quát an n 1 an 1 an 2 n , n 1 2 và tính lim an . ............HẾT............ Thí sinh không được sử dụng tài liệu và máy tính cầm tay. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh ...........................................................................Số báo danh ................. Giám thị coi thi .......................................................................... HƯỚNG DẪN GIẢI THAM KHẢOCâu I. 1. Cho hàm số y x 3 mx 2 1 có đồ thị C m . Tìm các giá trị của tham số m để đườngthẳng d : y 1 x cắt đồ thị C m tại 3 điểm phân biệt sao cho tiếp tuyến của đồ thị C m tạihai trong ba điểm đó vuông góc với nhau. Hướng dẫnGiả sử có ba giao điểm là A, B, C khác nhau, phương trình hoành độ giao điểm là: x 0 A 0; 1 3 2 x mx x 0 2 . Dễ thấy kA 0 ytt 1 suy ra không có tiếp tuyến x mx 1 0 *vuông góc nhau tại A. ...
Tìm kiếm theo từ khóa liên quan:
Đề thi HSG môn Toán lớp 12 Ôn thi HSG môn Toán lớp 12 Đề thi học sinh giỏi Toán 12 Đề thi học sinh giỏi môn Toán Luyện thi HSG Toán 12 Tiếp tuyến của đồ thịTài liệu có liên quan:
-
Bộ đề thi học sinh giỏi môn Toán lớp 9 năm 2017-2018 có đáp án
82 trang 278 0 0 -
Bộ đề thi học sinh giỏi môn Toán lớp 9 năm 2018-2019 có đáp án
60 trang 49 0 0 -
Bộ đề thi học sinh giỏi môn Toán lớp 8 năm 2017-2018 có đáp án
35 trang 48 0 0 -
Bộ đề thi học sinh giỏi cấp huyện môn Toán lớp 9 năm 2018-2019 có đáp án
36 trang 47 0 0 -
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm 2022-2023 - Phòng GD&ĐT TP. PR-TC, Ninh Thuận
1 trang 44 0 0 -
Đề thi học sinh giỏi giải Toán trên máy tính cầm tay cấp tỉnh năm 2022-2023 - Sở GD&ĐT Sóc Trăng
2 trang 41 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Toán lớp 12 (2012 - 2013) – Sở GD&ĐT Bắc Ninh
8 trang 29 0 0 -
Đề thi HSG cấp trường môn Toán lớp 12 năm 2021-2022 có đáp án - Trường THPT chuyên Nguyễn Trãi
5 trang 27 0 0 -
Đề thi chọn đội tuyển HSG môn Toán 12 năm 2018-2019 có đáp án - Sở GD&ĐT Bến Tre
4 trang 26 0 0 -
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán năm 2021-2022 - Trường THPT Chuyên Lê Quý Đôn
1 trang 25 0 0