Đề thi thử ĐH lần 1 Toán khối A, A1 (2013-2014) - THPT Lý Thái Tổ (Kèm Đ.án)
Số trang: 5
Loại file: pdf
Dung lượng: 1.35 MB
Lượt xem: 7
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Với đề thi thử Đại học lần 1 môn Toán khối A, A1 năm 2013-2014 của Sở Giáo dục và Đào tạo Bắc Ninh trường THPT Lý Thái Tổ sẽ giúp các bạn học sinh củng cố lại kiến thức và kỹ năng cần thiết để chuẩn bị cho kỳ thi học kỳ sắp tới. Mời các bạn tham khảo.
Nội dung trích xuất từ tài liệu:
Đề thi thử ĐH lần 1 Toán khối A, A1 (2013-2014) - THPT Lý Thái Tổ (Kèm Đ.án) www.VNMATH.com SỞ GD & ĐT BẮC NINH ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM HỌC 2013-2014TRƯỜNG THPT LÝ THÁI TỔ Môn: TOÁN; Khối A, A1 Thời gian: 180 phút, không kể thời gian phát đề. Ngày thi 02/11/2013 2x − 4 Câu 1 (2.0 điểm) Cho hàm số: y = x −1 a. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b. Tìm m để đường thẳng d có phương trình y = 2 x + m cắt đồ thị (C) tại hai điểm phân biệt A và B sao cho 4S∆IAB = 15 với I là giao điểm của hai đường tiệm cận của đồ thị (C). Câu 2 (1.0 điểm) Giải phương trình: 3 cos x − 2 = 3(cos x − 1)cot 2 x 4x 8x − 4 − 12 y 2 − 5 = 4 y3 + 13y + 18x − 9 Câu 3 (1.0 điểm) Giải hệ phương trình: 4x − 8x + 4 2 x − 1 + 2 y + 7y + 2y = 0 2 3 2 Câu 4 (1.0 điểm) Cho n là số nguyên dương thỏa mãn: Cn−3 − C2 −1 = C1 −1Cn +3 . Tìm hệ số của n n n n +2 n n số hạng chứa x trong khai triển nhị thức NewTon của biểu thức: P = x x n−8 − 11 3 3x Câu 5 (1.0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, cạnh AD = a 6 và cạnh AB = a 3 , M là trung điểm cạnh AD, hai mặt phẳng (SAC) và (SBM) cùng vuông góc với mặt phẳng đáy. Tính thể tích khối chóp S.OMC và chứng minh đường thẳng BM vuông góc với mặt phẳng (SAC) biết góc giữa cạnh bên SA và đáy là 60o. Câu 6 (1.0 điểm) Cho x, y, z là các số dương thỏa mãn: xy ≥ 1 và z ≥ 1. Tìm giá trị nhỏ nhất của biểu thức sau: x y z3 + 2 P= + + y + 1 x + 1 3(xy + 1) Câu 7 (1.0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng ∆1 và ∆ 2 có phương trình lần lượt là: 2 x − 11y + 7 = 0 và 2 x + 3y + 4 = 0 . Lập phương trình đường thẳng đi qua điểm M(8; −14) , cắt hai đường thẳng ∆1 , ∆ 2 lần lượt tại A và B sao cho: 3MB + 2 AM = 0. Câu 8 (1.0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường tròn (C1 ) và (C2 ) có 1 phương trình lần lượt là: (x − 1)2 + y 2 = và (x − 2)2 + (y − 2)2 = 4 . Lập phương trình đường 2 thẳng ∆ tiếp xúc với (C1 ) , đồng thời cắt (C2 ) tại hai điểm phân biệt A, B sao cho: AB = 2 2 . Câu 9 (1.0 điểm) Tìm m để phương trình sau có nghiệm: 2 x + 3 + (2 − 2m) x − 3 = (m − 1) x 2 − 9 -------------------------- Hết -------------------------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:.......................................................... Số báo danh:.................................. www.VNMATH.com SỞ GD & ĐT BẮC NINH ĐÁP ÁN – THANG ĐIỂMTRƯỜNG THPT LÝ THÁI TỔ ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM 2013 Môn: TOÁN; Khối A, A1 (Đáp án – thang điểm gồm 04 trang) Câu Đáp án Điểm 1 a. (1.0 điểm) Khảo sát…(2.0 điểm) • Tập xác định: D = ℝ {1} . • Sự biến thiên: lim y = 2 , lim y = 2 ⇒ y = 2 là đường TCN của đồ thị hàm số. 0.25 x →−∞ x →+∞ lim y = −∞ , lim y = +∞ ⇒ x = 1 là đường TCĐ của đồ thị hàm số. x →1+ − x →1 2 y = > 0 ∀x ∈ D (x − 1)2 0.25 ⇒ Hàm số đồng biến trên các khoảng (−∞;1) và (1; +∞). ...
Nội dung trích xuất từ tài liệu:
Đề thi thử ĐH lần 1 Toán khối A, A1 (2013-2014) - THPT Lý Thái Tổ (Kèm Đ.án) www.VNMATH.com SỞ GD & ĐT BẮC NINH ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM HỌC 2013-2014TRƯỜNG THPT LÝ THÁI TỔ Môn: TOÁN; Khối A, A1 Thời gian: 180 phút, không kể thời gian phát đề. Ngày thi 02/11/2013 2x − 4 Câu 1 (2.0 điểm) Cho hàm số: y = x −1 a. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b. Tìm m để đường thẳng d có phương trình y = 2 x + m cắt đồ thị (C) tại hai điểm phân biệt A và B sao cho 4S∆IAB = 15 với I là giao điểm của hai đường tiệm cận của đồ thị (C). Câu 2 (1.0 điểm) Giải phương trình: 3 cos x − 2 = 3(cos x − 1)cot 2 x 4x 8x − 4 − 12 y 2 − 5 = 4 y3 + 13y + 18x − 9 Câu 3 (1.0 điểm) Giải hệ phương trình: 4x − 8x + 4 2 x − 1 + 2 y + 7y + 2y = 0 2 3 2 Câu 4 (1.0 điểm) Cho n là số nguyên dương thỏa mãn: Cn−3 − C2 −1 = C1 −1Cn +3 . Tìm hệ số của n n n n +2 n n số hạng chứa x trong khai triển nhị thức NewTon của biểu thức: P = x x n−8 − 11 3 3x Câu 5 (1.0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, cạnh AD = a 6 và cạnh AB = a 3 , M là trung điểm cạnh AD, hai mặt phẳng (SAC) và (SBM) cùng vuông góc với mặt phẳng đáy. Tính thể tích khối chóp S.OMC và chứng minh đường thẳng BM vuông góc với mặt phẳng (SAC) biết góc giữa cạnh bên SA và đáy là 60o. Câu 6 (1.0 điểm) Cho x, y, z là các số dương thỏa mãn: xy ≥ 1 và z ≥ 1. Tìm giá trị nhỏ nhất của biểu thức sau: x y z3 + 2 P= + + y + 1 x + 1 3(xy + 1) Câu 7 (1.0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng ∆1 và ∆ 2 có phương trình lần lượt là: 2 x − 11y + 7 = 0 và 2 x + 3y + 4 = 0 . Lập phương trình đường thẳng đi qua điểm M(8; −14) , cắt hai đường thẳng ∆1 , ∆ 2 lần lượt tại A và B sao cho: 3MB + 2 AM = 0. Câu 8 (1.0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường tròn (C1 ) và (C2 ) có 1 phương trình lần lượt là: (x − 1)2 + y 2 = và (x − 2)2 + (y − 2)2 = 4 . Lập phương trình đường 2 thẳng ∆ tiếp xúc với (C1 ) , đồng thời cắt (C2 ) tại hai điểm phân biệt A, B sao cho: AB = 2 2 . Câu 9 (1.0 điểm) Tìm m để phương trình sau có nghiệm: 2 x + 3 + (2 − 2m) x − 3 = (m − 1) x 2 − 9 -------------------------- Hết -------------------------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:.......................................................... Số báo danh:.................................. www.VNMATH.com SỞ GD & ĐT BẮC NINH ĐÁP ÁN – THANG ĐIỂMTRƯỜNG THPT LÝ THÁI TỔ ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM 2013 Môn: TOÁN; Khối A, A1 (Đáp án – thang điểm gồm 04 trang) Câu Đáp án Điểm 1 a. (1.0 điểm) Khảo sát…(2.0 điểm) • Tập xác định: D = ℝ {1} . • Sự biến thiên: lim y = 2 , lim y = 2 ⇒ y = 2 là đường TCN của đồ thị hàm số. 0.25 x →−∞ x →+∞ lim y = −∞ , lim y = +∞ ⇒ x = 1 là đường TCĐ của đồ thị hàm số. x →1+ − x →1 2 y = > 0 ∀x ∈ D (x − 1)2 0.25 ⇒ Hàm số đồng biến trên các khoảng (−∞;1) và (1; +∞). ...
Tìm kiếm theo từ khóa liên quan:
Sự biến thiên của hàm số Số nguyên dương Đề thi thử Đại học môn Toán Đề ôn thi Đại học 2014 Đề thi thử Toán khối A 2014 Đề luyện thi Đại học khối A 2014Tài liệu có liên quan:
-
Đề kiểm tra kiến thức môn Toán lớp 9 năm 2020-2021 - Trường THPT chuyên KHTN (Vòng 1 - Đợt 2)
1 trang 135 0 0 -
Bài giảng Toán cao cấp 2: Phần Giải tích - Nguyễn Phương
88 trang 43 0 0 -
Đề thi Olympic Toán Quốc tế lần thứ 65 năm 2024
24 trang 35 0 0 -
Đề Thi Thử ĐH Môn TOÁN Lần I - THPT Chuyên Lê Quý Đôn [2009 - 2010]
12 trang 33 0 0 -
Đề thi thử Đại học môn Toán năm 2014 - Bộ GD&ĐT - Đề số 1
1 trang 30 0 0 -
Đề thi Olympic Tin học sinh viên lần thứ XXVII khối Cá nhân không chuyên (Năm 2018)
4 trang 30 0 0 -
Ôn thi tốt nghiệp, Đại học, Cao đẳng phần hàm số và đồ thị
24 trang 29 0 0 -
Bài tập trắc nghiệm phần quang học (Đáp án)
1 trang 29 0 0 -
Đáp án và đề trắc nghiệm ôn thi ĐH môn Hóa (Đề 1+2)
8 trang 27 0 0 -
Bài tập trắc nghiệm cơ học vật rắn 12 (Có đáp án)
12 trang 27 0 0