Danh mục tài liệu

Luận văn Thạc sĩ Toán học: Vectơ riêng dương của một số ánh xạ tuyến tính dương

Số trang: 73      Loại file: pdf      Dung lượng: 729.50 KB      Lượt xem: 3      Lượt tải: 0    
Xem trước 8 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Luận văn được trình bày với các nội dung: Nhắc lại các kiến thức về nón trong không gian Banach có thứ tự và sự tồn tại vecto riêng dương của ánh xạ compact dương, trình bày sự tồn tại vecto riêng dương của ánh xạ liên hợp, giới thiệu về điểm tựa trong, nón Minihedral và sự duy nhất của vectơ riêng dương, trình bày về vecto riêng dương của ánh xạ tuyến tính dương không compact. Mời các bạn tham khảo.
Nội dung trích xuất từ tài liệu:
Luận văn Thạc sĩ Toán học: Vectơ riêng dương của một số ánh xạ tuyến tính dươngBỘ GIÁO DỤC VÀ ĐÀO TẠOTRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINHTrần Huy VũVECTƠ RIÊNG DƯƠNG CỦA MỘT SỐÁNH XẠ TUYẾN TÍNH DƯƠNGLUẬN VĂN THẠC SĨ TOÁN HỌCThành Phố Hồ Chí Minh - 2012BỘ GIÁO DỤC VÀ ĐÀO TẠOTRƯƠNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINHTrần Huy VũVECTƠ RIÊNG DƯƠNG CỦA MỘT SỐÁNH XẠ TUYẾN TÍNH DƯƠNGChuyên ngành: TOÁN GIẢI TÍCHMã Số: 60 46 01LUẬN VĂN THẠC SĨ TOÁN HỌCNGƯỜI HƯỚNG DẪN KHOA HỌC:TS. TRẦN ĐÌNH THANHThành Phố Hồ Chí Minh - 2012MỤC LỤCMỤC LỤCLời cảm ơnPhần mở đầu ..............................................................................................................1Phần nội dung chính .................................................................................................2Chương 1 VECTƠ RIÊNG DƯƠNG CỦA ÁNH XẠ COMPACT DƯƠNG ......31.1 Không gian Banach có thứ tự ............................................................................31.2 Vecto riêng dương của ánh xạ compact dương .................................................4Chương 2 VECTƠ RIÊNG DƯƠNG CỦA ÁNH XẠ LIÊN HỢP .....................172.1 Ánh xạ bị chặn, liên tục theo nón. ..................................................................172.2 Các định lí về sự tồn tại vectơ riêng dương của ánh xạ liên hợp ..............18Chương 3 SỰ DUY NHẤT CỦA VECTƠ RIÊNG DƯƠNG ..............................42Chương 4 VECTƠ RIÊNG DƯƠNG CỦA ÁNH XẠ TUYẾN TÍNH DƯƠNGKHÔNG COMPACT ..............................................................................................57Phần kết luận ...........................................................................................................68TÀI LIỆU THAM KHẢO ......................................................................................69Lời cảm ơnLời đầu tiên trong bản luận văn này, tôi trân trọng gởi đến Thầy TS. TrầnĐình Thanh đã tận tình hướng dẫn và giúp đỡ tôi hoàn thành luận văn, lòng biết ơnsâu sắc.Xin chân thành tỏ bày lòng biết ơn chân thành đến Thầy PGS.TS NguyễnBích Huy đã dành thời gian quý báo của mình để giúp đỡ, đóng góp nhiều ý kiếncho luận văn của tôi.Xin chân thành cảm tạ quý Thầy, Cô khoa Toán – Tin học Trường Đại HọcSư Phạm, Trường Đại Học Khoa Học Tự Nhiên, Thành Phố Hồ Chí Minh đã tậntình giảng dạy, truyền đạt kiến thức và hỗ trợ tư liệu cho tôi trong suốt thời gian họctập.Tiếp đến xin chân thành cảm tạ quý Thầy, Cô thuộc Phòng Quản Lý KhoaHọc Công Nghệ - Sau Đại học, Trường Đại Học Sư Phạm Thành Phố Hồ Chí Minhđã giúp đỡ, động viên, tạo mọi điều kiện thuận lợi về thủ tục hành chính cho tôitrong suốt quá trình học tập.Sau cùng, xin chân thành cảm ơn Ban giám hiệu trường Trung Học PhổThông Bình Phú đã tạo điều kiện thuận lợi cho tôi được tham dự lớp Cao học tạiTrường Đại Học Sư Phạm, Thành Phố Hồ Chí Minh. Xin gửi lời tri ân tất cả cácbạn bè đồng nghiệp, các bạn cùng lớp Cao học Giải tích khóa 21, cùng gia đình đãđộng viên quan tâm đến tôi trong quãng thời gian học tập và làm luận văn.Thành phố Hồ Chí Minh, tháng 10 năm 2012Học viên, Trần Huy Vũ1Phần mở đầuVectơ riêng, giá trị riêng của các ánh xạ tuyến tính đóng vai trò quan trọngtrong Lý thuyết về phương trình vi phân, Tích phân, Giải tích hàm, Đại số,… Đặcbiệt vectơ riêng dương và giá trị riêng dương của một ánh xạ tuyến tính dương trongkhông gian Banach có thứ tự tìm được các ứng dụng quan trọng trong nhiều lĩnhvực của khoa học và kỹ thuật hiện đại như Lý thuyết điều khiển, Lý thuyết tối ưu,Lý thuyết về các lò phản ứng,…Sự tồn tại vectơ riêng dương với giá trị riêng dương thỏa mãn một số tínhchất đặc biệt của ma trận dương được Perron chứng minh vào năm 1907. Kết quảtương tự được Entz mở rộng cho toán tử tuyến tính với hạch dương vào năm 1912.Các kết quả riêng biệt cho ma trận dương và toán tử tích phân dương đã được Kreinvà Rutman tổng quát hóa cho ánh xạ tuyến tính compact dương mạnh trong khônggian Banach với thứ tự sinh bởi nón trong những năm 1940. Từ đó đến nay sự tồntại vectơ riêng dương tiếp tục được nghiên cứu cho nhiều lớp toán tử rộng hơn lớptoán tử compact dương mạnh để có thể ứng dụng vào các bài toán thực tiễn củakhoa học và kỹ thuật.Các kết quả về tồn tại vectơ riêng dương của các ánh xạ được nghiên cứu bởinhiều tác giả bằng các phương pháp khác nhau trên nhiều bài báo và sách chuyênkhảo. Luận văn này được trình bày sau khi thu thập các tài liệu có liên quan đến đềtài, nghiên cứu chúng. Các kết quả được trình bày một hệ thống khoa học thốngnhất với các chứng minh chi tiết.