
Bài 3: Đường thẳng vuông góc với mặt phẳng
Số trang: 13
Loại file: ppt
Dung lượng: 224.50 KB
Lượt xem: 15
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Một đường thẳng gọi là vuông góc với một mặt phẳng nếu nóvuông góc với mọi đường thẳng nằm trong mặt phẳng ấy.
Nội dung trích xuất từ tài liệu:
Bài 3: Đường thẳng vuông góc với mặt phẳng§ 3. Đường thẳng vuông góc với mặt phẳng 1. Lí thuyết 2. Bài tập 1. Định nghĩa đường thẳng vuông góc với mặt phẳng a Hoạt động 1 u b v r c d P wĐịnh nghĩa 1:Một đường thẳng gọi là vuông góc với một mặt phẳng nếu nóvuông góc với mọi đường thẳng nằm trong mặt phẳng ấy.Định lí 2:Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau nằmtrong (P) thì d vuông góc với (P). Chứng tỏ rằng nếu một đường thẳng vuông gócHoạt động 2 với hai cạnh của một tam giác thì nó cũng vuông góc với cạnh thứ ba. a C A O B2. Các tính chất Tính chất 1: Có duy nhất mặt phẳng (P) đi qua điểm O cho trước và vuông góc với đường thẳng (d) cho trước. a b c O PTính chất 2: Có duy nhất đường thẳng (∆ ) đi qua điểm O chotrước và vuông góc với mặt phẳng (P) cho trước. Q Δ R O a b PMặt phẳng trung trực của đoạn thẳng AB Mặ t phẳng vuông góc với AB tại trung điểm của nó gọi là mặt phẳng trung trực của AB. M B O AHoạtđộng3 Tìm tập hợp các điểm cách đều ba đỉnh của tam M giác ABC. A C H B CABRI3. Liên hệ giữa quan hệ song song và vuông góccủa đường thẳng và mặt phẳng Tính chất 3: a) Mặt phẳng nào vuông góc với một trong hai đường thẳng song song thì cũng vuông góc với đường thẳng còn lại. b) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. a b P Tính chất 4: a a) Đường thẳng nào vuông góc với một trong hai mặt phẳng song song thì cũng vuông góc với mặt phẳng còn lại.P b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.Q Tính chất 5: a) Cho đường thẳng a và mặt phẳng (P) song song với a nhau. Đường thẳng nàoP vuông góc với a thì cũng vuông góc với (P). b) Nếu một đường thẳng và một mặt phẳng (không chữa đường thẳng đó) cùng vuông góc với một đường thẳng thì chúng song song với nhau. b4. Định lí ba đường vuông gócPhép chiếu vuông góc Định nghĩa 2: Phép chiếu song song lên mặt phẳng (P) theo phương l vuông góc với (P) gọi là phép ciếu vuông góc lên mặt phẳng (P). Định lí 2: Cho đường thẳng a không vuông B góc với mp (P), đường thẳng b a nằm trên (P). Điều kiện cần và đủ A để b vuông góc với a là b vuông góc với a’ là hình chiếu của a trên (P). A a b B P CABRI5. Góc giữa đường thẳng và mặt phẳng a a β a’ P PĐịnh nghĩa 3: 0 Nếu đường thẳng a vuông góc với mp (P) thì ta nói góc giữa a và (P) bằng 90 Nếu đường thẳng a không vuông góc với mp (P) thì góc giữa a và là hình chiếu a’ của a trên (P) gọi là góc giữa a và (P).Ví dụ (trang 101) Cho hình chóp S.ABCD có đáy là hình vuông cạnh a,SA vuông góc với mp(ABCD). S 1)Gọi M,N lần lượt là hình ...
Nội dung trích xuất từ tài liệu:
Bài 3: Đường thẳng vuông góc với mặt phẳng§ 3. Đường thẳng vuông góc với mặt phẳng 1. Lí thuyết 2. Bài tập 1. Định nghĩa đường thẳng vuông góc với mặt phẳng a Hoạt động 1 u b v r c d P wĐịnh nghĩa 1:Một đường thẳng gọi là vuông góc với một mặt phẳng nếu nóvuông góc với mọi đường thẳng nằm trong mặt phẳng ấy.Định lí 2:Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau nằmtrong (P) thì d vuông góc với (P). Chứng tỏ rằng nếu một đường thẳng vuông gócHoạt động 2 với hai cạnh của một tam giác thì nó cũng vuông góc với cạnh thứ ba. a C A O B2. Các tính chất Tính chất 1: Có duy nhất mặt phẳng (P) đi qua điểm O cho trước và vuông góc với đường thẳng (d) cho trước. a b c O PTính chất 2: Có duy nhất đường thẳng (∆ ) đi qua điểm O chotrước và vuông góc với mặt phẳng (P) cho trước. Q Δ R O a b PMặt phẳng trung trực của đoạn thẳng AB Mặ t phẳng vuông góc với AB tại trung điểm của nó gọi là mặt phẳng trung trực của AB. M B O AHoạtđộng3 Tìm tập hợp các điểm cách đều ba đỉnh của tam M giác ABC. A C H B CABRI3. Liên hệ giữa quan hệ song song và vuông góccủa đường thẳng và mặt phẳng Tính chất 3: a) Mặt phẳng nào vuông góc với một trong hai đường thẳng song song thì cũng vuông góc với đường thẳng còn lại. b) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. a b P Tính chất 4: a a) Đường thẳng nào vuông góc với một trong hai mặt phẳng song song thì cũng vuông góc với mặt phẳng còn lại.P b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.Q Tính chất 5: a) Cho đường thẳng a và mặt phẳng (P) song song với a nhau. Đường thẳng nàoP vuông góc với a thì cũng vuông góc với (P). b) Nếu một đường thẳng và một mặt phẳng (không chữa đường thẳng đó) cùng vuông góc với một đường thẳng thì chúng song song với nhau. b4. Định lí ba đường vuông gócPhép chiếu vuông góc Định nghĩa 2: Phép chiếu song song lên mặt phẳng (P) theo phương l vuông góc với (P) gọi là phép ciếu vuông góc lên mặt phẳng (P). Định lí 2: Cho đường thẳng a không vuông B góc với mp (P), đường thẳng b a nằm trên (P). Điều kiện cần và đủ A để b vuông góc với a là b vuông góc với a’ là hình chiếu của a trên (P). A a b B P CABRI5. Góc giữa đường thẳng và mặt phẳng a a β a’ P PĐịnh nghĩa 3: 0 Nếu đường thẳng a vuông góc với mp (P) thì ta nói góc giữa a và (P) bằng 90 Nếu đường thẳng a không vuông góc với mp (P) thì góc giữa a và là hình chiếu a’ của a trên (P) gọi là góc giữa a và (P).Ví dụ (trang 101) Cho hình chóp S.ABCD có đáy là hình vuông cạnh a,SA vuông góc với mp(ABCD). S 1)Gọi M,N lần lượt là hình ...
Tìm kiếm theo từ khóa liên quan:
khoa học tự nhiên toán học lớp 12 Đường thẳng vuông góc với mặt phẳngTài liệu có liên quan:
-
Đề thi trắc nghiệm côn trùng Đại cuơng
14 trang 55 0 0 -
Truyện ngụ ngôn Bài học đâu tiên của Gấu con
1 trang 43 0 0 -
16 trang 39 0 0
-
THUYẾT TRÌNH NHÓM SEMINAR KỸ THUẬT AN TOÀN MÔI TRƯỜNG
35 trang 38 0 0 -
Khoa học và nghệ thuật lãnh đạo công ty (Phần 28)
8 trang 35 0 0 -
276 trang 35 0 0
-
Thể tích khối đa diện mặt tròn xoay
16 trang 33 0 0 -
Chương 3: Liên kết hóa học trong phức chất
59 trang 33 0 0 -
Bài thuyết trình ô nhiễm môi trường biển
27 trang 33 0 0 -
Lần đầu phác họa bản đồ hệ gen của một gia đình
6 trang 33 0 0 -
13 trang 33 0 0
-
Tính khoa học trong bản kế hoạch PR
2 trang 32 0 0 -
4 trang 29 0 0
-
27 trang 29 0 0
-
1 trang 29 0 0
-
Hệ thống bài tập hình học lớp 12
8 trang 29 0 0 -
Hướng dẫn giải đề thi tự ôn 3,4
8 trang 28 0 0 -
Báo cáo nhóm Khái quát về liên minh Châu Âu
45 trang 28 0 0 -
Phương pháp cắt, nhuộm mẫu thực vật
9 trang 28 0 0 -
Thuật toán ICA - 13: Practical Considerations
10 trang 27 0 0