Chuyên đề 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số
Số trang: 13
Loại file: pdf
Dung lượng: 235.51 KB
Lượt xem: 14
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Chuyên đề 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số giúp các em học sinh nắm được các kiến thức cơ bản qua các bài tập về tính đơn điệu của hàm số, cực trị của hàm số, giá trị lớn nhất và giá trị nhỏ nhất của hàm số, đường tiệm cận của đồ thị hàm số.
Nội dung trích xuất từ tài liệu:
Chuyên đề 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số www.MATHVN.comChuyên đ 1Kh o Sát S Bi n Thiên Và V Đ ThHàm S§1. Tính Đơn Đi u C a Hàm SBài t p 1.1. Tìm các kho ng đơn đi u c a các hàm s sau a) y = 2x3 − 3x2 + 1. b) y = −x3 − 3x + 2. c) y = √3 + 3x2 + 3x. x d) y = x4 − 2x2 + 3. e) y = −x4 + 2x3 − 2x − 1. f) y = x2 − 2x − 3. 2x + 3 x+2 x2 − 4x + 4 g) y = . h) y = . i) y = . x+2 3x − 1 1−xL i gi i. x=0 a) T p xác đ nh: D = R. Đ o hàm: y = 6x2 − 6x; y = 0 ⇔ . B ng bi n thiên: x=1 x −∞ 0 1 +∞ y + 0 − 0 + 1 +∞ y −∞ 0 V y hàm s đ ng bi n trên các kho ng (−∞; 0), (1; +∞) và ngh ch bi n trên (0; 1). b) T p xác đ nh: D = R. Đ o hàm: y = −3x2 − 3 < 0, ∀x ∈ R. Do đó hàm s luôn ngh ch bi n trên R. c) T p xác đ nh: D = R. Đ o hàm: y = 3x2 + 6x + 3 ≥ 0, ∀x ∈ R. Do đó hàm s luôn đ ng bi n trên R. x=0 d) T p xác đ nh: D = R. Đ o hàm: y = 4x3 − 4x; y = 0 ⇔ . B ng bi n thiên: x = ±1 x −∞ −1 0 1 +∞ y − 0 + 0 − 0 + +∞ 3 +∞ y 2 2 V y hàm s đ ng bi n trên các kho ng (−1; 0) , (1; +∞) và ngh ch bi n trên các kho ng (−∞; −1) , (0; 1). x=1 e) T p xác đ nh: D = R. Đ o hàm: y = −4x3 + 6x2 − 2; y = 0 ⇔ 1 . B ng bi n thiên: x = −2 x −∞ −1 2 1 +∞ y + 0 − 0 − 5 − 16 y −2 −∞ −∞ www.MATHVN.com 1Nguy n Minh Hi u www.MATHVN.com 1 1 V y hàm s đ ng bi n trên kho ng −∞; − 2 và ngh ch bi n trên kho ng − 2 ; +∞ . x−1 f) T p xác đ nh: D = (−∞; −1] ∪ [3; +∞). Đ o hàm: y = √ ; y = 0 ⇔ x = 1. B ng bi n thiên: x 2 − 2x − 3 x −∞ −1 3 +∞ y − + +∞ +∞ y 0 0 V y hàm s đ ng bi n trên kho ng (3; +∞) và ngh ch bi n trên kho ng (−∞; −1). 1 g) T p xác đ nh: D = R {−2}. Đ o hàm: y = > 0, ∀x ∈ D. (x + 2)2 Do đó hàm s đ ng bi n trên các kho ng (−∞; −2) và (−2; +∞). 1 7 h) T p xác đ nh: D = R 3 . Đ o hàm: y = − < 0, ∀x ∈ D. (3x − 1)2 Do đó hàm s ngh ch bi n trên các kho ng (−∞; 3 ) và ( 1 ; +∞). 1 3 2 −x + 2x x=0 i) T p xác ...
Nội dung trích xuất từ tài liệu:
Chuyên đề 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số www.MATHVN.comChuyên đ 1Kh o Sát S Bi n Thiên Và V Đ ThHàm S§1. Tính Đơn Đi u C a Hàm SBài t p 1.1. Tìm các kho ng đơn đi u c a các hàm s sau a) y = 2x3 − 3x2 + 1. b) y = −x3 − 3x + 2. c) y = √3 + 3x2 + 3x. x d) y = x4 − 2x2 + 3. e) y = −x4 + 2x3 − 2x − 1. f) y = x2 − 2x − 3. 2x + 3 x+2 x2 − 4x + 4 g) y = . h) y = . i) y = . x+2 3x − 1 1−xL i gi i. x=0 a) T p xác đ nh: D = R. Đ o hàm: y = 6x2 − 6x; y = 0 ⇔ . B ng bi n thiên: x=1 x −∞ 0 1 +∞ y + 0 − 0 + 1 +∞ y −∞ 0 V y hàm s đ ng bi n trên các kho ng (−∞; 0), (1; +∞) và ngh ch bi n trên (0; 1). b) T p xác đ nh: D = R. Đ o hàm: y = −3x2 − 3 < 0, ∀x ∈ R. Do đó hàm s luôn ngh ch bi n trên R. c) T p xác đ nh: D = R. Đ o hàm: y = 3x2 + 6x + 3 ≥ 0, ∀x ∈ R. Do đó hàm s luôn đ ng bi n trên R. x=0 d) T p xác đ nh: D = R. Đ o hàm: y = 4x3 − 4x; y = 0 ⇔ . B ng bi n thiên: x = ±1 x −∞ −1 0 1 +∞ y − 0 + 0 − 0 + +∞ 3 +∞ y 2 2 V y hàm s đ ng bi n trên các kho ng (−1; 0) , (1; +∞) và ngh ch bi n trên các kho ng (−∞; −1) , (0; 1). x=1 e) T p xác đ nh: D = R. Đ o hàm: y = −4x3 + 6x2 − 2; y = 0 ⇔ 1 . B ng bi n thiên: x = −2 x −∞ −1 2 1 +∞ y + 0 − 0 − 5 − 16 y −2 −∞ −∞ www.MATHVN.com 1Nguy n Minh Hi u www.MATHVN.com 1 1 V y hàm s đ ng bi n trên kho ng −∞; − 2 và ngh ch bi n trên kho ng − 2 ; +∞ . x−1 f) T p xác đ nh: D = (−∞; −1] ∪ [3; +∞). Đ o hàm: y = √ ; y = 0 ⇔ x = 1. B ng bi n thiên: x 2 − 2x − 3 x −∞ −1 3 +∞ y − + +∞ +∞ y 0 0 V y hàm s đ ng bi n trên kho ng (3; +∞) và ngh ch bi n trên kho ng (−∞; −1). 1 g) T p xác đ nh: D = R {−2}. Đ o hàm: y = > 0, ∀x ∈ D. (x + 2)2 Do đó hàm s đ ng bi n trên các kho ng (−∞; −2) và (−2; +∞). 1 7 h) T p xác đ nh: D = R 3 . Đ o hàm: y = − < 0, ∀x ∈ D. (3x − 1)2 Do đó hàm s ngh ch bi n trên các kho ng (−∞; 3 ) và ( 1 ; +∞). 1 3 2 −x + 2x x=0 i) T p xác ...
Tìm kiếm theo từ khóa liên quan:
Ôn thi đại học môn Toán Chuyên đề khảo sát hàm số Chuyên đề Khảo sát sự biến thiên Bài toán vẽ đồ thị hàm số Tính đơn điệu của hàm số Cực trị của hàm sốTài liệu có liên quan:
-
Luận văn: Ứng dụng của đạo hàm để tìm cực trị của hàm số
75 trang 67 0 0 -
150 đề thi thử đại học môn Toán
155 trang 54 0 0 -
GIÁO TRÌNH MATLAB (phụ lục lệnh và hàm)
8 trang 53 0 0 -
157 trang 52 0 0
-
Giáo án Đại số 12 bài 2: Cực trị của hàm số
104 trang 51 0 0 -
145 trang 51 0 0
-
Đề cương ôn tập học kì 1 môn Toán lớp 12 năm 2023-2024 - Trường THPT Gia Viễn
91 trang 49 0 0 -
PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH CHỨA CĂN
3 trang 46 0 0 -
9 trang 45 0 0
-
Bài giảng Toán cao cấp 2: Phần Giải tích - Nguyễn Phương
88 trang 43 0 0