Chuyên đề Các phương pháp tính tích phân
Số trang: 39
Loại file: pdf
Dung lượng: 375.51 KB
Lượt xem: 19
Lượt tải: 0
Xem trước 4 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Ngày nay phép tính vi tích phân chiếm một vị trí hết sức quan trọng trong Toán học, tích phân được ứng dụng rộng rãi như để tính diện tích hình phẳng, thể tích khối tròn xoay, nó còn là đối tượng nghiên cứu của giải tích, là nền tảng cho lý thuyết hàm, lý thuyết phương trình vi phân, phương trình đạo hàm riêng...
Nội dung trích xuất từ tài liệu:
Chuyên đề "Các phương pháp tính tích phân" CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI L I NÓI ð U Ngày nay phép tính vi tích phân chi m m t v trí h t s c quan tr ng trong Toán h c, tích phân ñư c ng d ng r ng rãi như ñ tính di n tích hình ph ng, th tích kh i tròn xoay, nó còn là ñ i tư ng nghiên c u c a gi i tích, là n n t ng cho lý thuy t hàm, lý thuy t phương trình vi phân, phương trình ñ o hàm riêng...Ngoài ra phép tính tích phân còn ñư c ng d ng r ng rãi trong Xác su t, Th ng kê, V t lý, Cơ h c, Thiên văn h c, y h c... Phép tính tích phân ñư c b t ñ u gi i thi u cho các em h c sinh l p 12, ti p theo ñư c ph bi n trong t t c các trư ng ð i h c cho kh i sinh viên năm th nh t và năm th hai trong chương trình h c ð i cương. Hơn n a trong các kỳ thi T t nghi p THPT và kỳ thi Tuy n sinh ð i h c phép tính tích phân h u như luôn có trong các ñ thi môn Toán c a kh i A, kh i B và c kh i D. Bên c nh ñó, phép tính tích phân cũng là m t trong nh ng n i dung ñ thi tuy n sinh ñ u vào h Th c sĩ và nghiên c u sinh. V i t m quan tr ng c a phép tính tích phân, chính vì th mà tôi vi t m t s kinh nghi m gi ng d y tính tích phân c a kh i 12 v i chuyên ñ “TÍNH TÍCH PHÂN B NG PHƯƠNG PHÁP PHÂN TÍCH - ð I BI N S VÀ T NG PH N” ñ ph n nào c ng c , nâng cao cho các em h c sinh kh i 12 ñ các em ñ t k t qu cao trong kỳ thi T t nghi p THPT và kỳ thi Tuy n sinh ð i h c và giúp cho các em có n n t ng trong nh ng năm h c ð i cương c a ð i h c. Trong ph n n i dung chuyên ñ dư i ñây, tôi xin ñư c nêu ra m t s bài t p minhh a cơ b n tính tích phân ch y u áp d ng phương pháp phân tích, phương pháp ñ i bi n s ,phương pháp tích phân t ng ph n. Các bài t p ñ ngh là các ñ thi T t nghi p THPT và ñthi tuy n sinh ð i h c Cao ñ ng c a các năm ñ các em h c sinh rèn luy n k năng tính tíchphân và ph n cu i c a chuyên ñ là m t s câu h i tr c nghi m tích phân. Tuy nhiên v i kinh nghi m còn h n ch nên dù có nhi u c g ng nhưng khi trình bàychuyên ñ này s không tránh kh i nh ng thi u sót, r t mong ñư c s góp ý chân tình c aquý Th y Cô trong H i ñ ng b môn Toán S Giáo d c và ðào t o t nh ð ng Nai. Nhân d pnày tôi xin c m ơn Ban lãnh ñ o nhà trư ng t o ñi u ki n t t cho tôi và c m ơn quý th y côtrong t Toán trư ng Nam Hà, các ñ ng nghi p, b n bè ñã ñóng góp ý ki n cho tôi hoànthành chuyên ñ này. Tôi xin chân thành cám ơn./. Trang 1CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI M CL C L i nói ñ u 1 M cl c 2 I. Nguyên hàm: I.1. ð nh nghĩa nguyên hàm 3 I.2. ð nh lý 3 I.3. Các tính ch t c a nguyên hàm 3 I.4. B ng công th c nguyên hàm và m t s công th c b sung 4 II. Tích phân: II.1. ð nh nghĩa tích phân xác ñ nh 5 II.2. Các tính ch t c a tích phân 5 II.3 Tính tích phân b ng phương pháp phân tích 5 Bài t p ñ ngh 1 9 II.4 Tính tích phân b ng phương pháp ñ i bi n s 10 II.4.1 Phương pháp ñ i bi n s lo i 1 10 ð nh lý v phương pháp ñ i bi n s lo i 1 13 M t s d ng khác dùng phương pháp ñ i bi n s lo i 1 14 Bài t p ñ ngh s 2 14 Bài t p ñ ngh s 3 15 Bài t p ñ ngh s 4: Các ñ thi tuy n sinh ð i h c Cao ñ ng 16 II.4.2 Phương pháp ñ i bi n s lo i 2 16 Bài t p ñ ngh s 5 21 Các ñ thi T t nghi p trung h c ph thông 22 Các ñ thi tuy n sinh ð i h c Cao ñ ng 22 II.5. Phương pháp tích phân t ng ph n 23 Bài t p ñ ngh s 6: Các ñ thi tuy n sinh ð i h c Cao ñ ng 28 III. Ki m tra k t qu c a m t bài gi i tính tích phân b ng máy tính CASIO fx570-MS 29 Bài t p ñ ngh s 7: Các câu h i tr c nghi m tích phân 30 Ph l c 36 Trang 2CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔII. NGUYÊN HÀM:I.1. ð NH NGHĨA NGUYÊN HÀM: Hàm s F(x) ñư c g i là nguyên hàm c a hàm s f(x) trên (a;b) n u v i m ix∈(a;b): F’(x) = f(x) VD1: a) Hàm s F(x) = x3 là nguyên hàm c a hàm s f(x) = 3x2 trên R 1 b) Hàm s F(x) = lnx là nguyên hàm c a hàm s f(x) = trên (0;+∞) xI.2. ð NH LÝ: N u F(x) là m t nguyên hàm c a hàm s f(x) trên (a;b) thì: a) V i m i h ng s C, F(x) + C cũng là m t nguyên hàm c a f(x) trên kho ng ñó. b) Ngư c l i, m i nguyên hàm c a hàm s f(x) trên kho ng (a;b) ñ u có th vi tdư i d ng F(x) + C v i C là m t h ng s . Theo ñ nh lý trên, ñ tìm t t c các nguyên hàm c a hàm s f(x) thì ch c n tìm m tnguyên hàm nào ñó c a nó r i c ng vào nó m t h ng s C. T p h p các nguyên hàm ...
Nội dung trích xuất từ tài liệu:
Chuyên đề "Các phương pháp tính tích phân" CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI L I NÓI ð U Ngày nay phép tính vi tích phân chi m m t v trí h t s c quan tr ng trong Toán h c, tích phân ñư c ng d ng r ng rãi như ñ tính di n tích hình ph ng, th tích kh i tròn xoay, nó còn là ñ i tư ng nghiên c u c a gi i tích, là n n t ng cho lý thuy t hàm, lý thuy t phương trình vi phân, phương trình ñ o hàm riêng...Ngoài ra phép tính tích phân còn ñư c ng d ng r ng rãi trong Xác su t, Th ng kê, V t lý, Cơ h c, Thiên văn h c, y h c... Phép tính tích phân ñư c b t ñ u gi i thi u cho các em h c sinh l p 12, ti p theo ñư c ph bi n trong t t c các trư ng ð i h c cho kh i sinh viên năm th nh t và năm th hai trong chương trình h c ð i cương. Hơn n a trong các kỳ thi T t nghi p THPT và kỳ thi Tuy n sinh ð i h c phép tính tích phân h u như luôn có trong các ñ thi môn Toán c a kh i A, kh i B và c kh i D. Bên c nh ñó, phép tính tích phân cũng là m t trong nh ng n i dung ñ thi tuy n sinh ñ u vào h Th c sĩ và nghiên c u sinh. V i t m quan tr ng c a phép tính tích phân, chính vì th mà tôi vi t m t s kinh nghi m gi ng d y tính tích phân c a kh i 12 v i chuyên ñ “TÍNH TÍCH PHÂN B NG PHƯƠNG PHÁP PHÂN TÍCH - ð I BI N S VÀ T NG PH N” ñ ph n nào c ng c , nâng cao cho các em h c sinh kh i 12 ñ các em ñ t k t qu cao trong kỳ thi T t nghi p THPT và kỳ thi Tuy n sinh ð i h c và giúp cho các em có n n t ng trong nh ng năm h c ð i cương c a ð i h c. Trong ph n n i dung chuyên ñ dư i ñây, tôi xin ñư c nêu ra m t s bài t p minhh a cơ b n tính tích phân ch y u áp d ng phương pháp phân tích, phương pháp ñ i bi n s ,phương pháp tích phân t ng ph n. Các bài t p ñ ngh là các ñ thi T t nghi p THPT và ñthi tuy n sinh ð i h c Cao ñ ng c a các năm ñ các em h c sinh rèn luy n k năng tính tíchphân và ph n cu i c a chuyên ñ là m t s câu h i tr c nghi m tích phân. Tuy nhiên v i kinh nghi m còn h n ch nên dù có nhi u c g ng nhưng khi trình bàychuyên ñ này s không tránh kh i nh ng thi u sót, r t mong ñư c s góp ý chân tình c aquý Th y Cô trong H i ñ ng b môn Toán S Giáo d c và ðào t o t nh ð ng Nai. Nhân d pnày tôi xin c m ơn Ban lãnh ñ o nhà trư ng t o ñi u ki n t t cho tôi và c m ơn quý th y côtrong t Toán trư ng Nam Hà, các ñ ng nghi p, b n bè ñã ñóng góp ý ki n cho tôi hoànthành chuyên ñ này. Tôi xin chân thành cám ơn./. Trang 1CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔI M CL C L i nói ñ u 1 M cl c 2 I. Nguyên hàm: I.1. ð nh nghĩa nguyên hàm 3 I.2. ð nh lý 3 I.3. Các tính ch t c a nguyên hàm 3 I.4. B ng công th c nguyên hàm và m t s công th c b sung 4 II. Tích phân: II.1. ð nh nghĩa tích phân xác ñ nh 5 II.2. Các tính ch t c a tích phân 5 II.3 Tính tích phân b ng phương pháp phân tích 5 Bài t p ñ ngh 1 9 II.4 Tính tích phân b ng phương pháp ñ i bi n s 10 II.4.1 Phương pháp ñ i bi n s lo i 1 10 ð nh lý v phương pháp ñ i bi n s lo i 1 13 M t s d ng khác dùng phương pháp ñ i bi n s lo i 1 14 Bài t p ñ ngh s 2 14 Bài t p ñ ngh s 3 15 Bài t p ñ ngh s 4: Các ñ thi tuy n sinh ð i h c Cao ñ ng 16 II.4.2 Phương pháp ñ i bi n s lo i 2 16 Bài t p ñ ngh s 5 21 Các ñ thi T t nghi p trung h c ph thông 22 Các ñ thi tuy n sinh ð i h c Cao ñ ng 22 II.5. Phương pháp tích phân t ng ph n 23 Bài t p ñ ngh s 6: Các ñ thi tuy n sinh ð i h c Cao ñ ng 28 III. Ki m tra k t qu c a m t bài gi i tính tích phân b ng máy tính CASIO fx570-MS 29 Bài t p ñ ngh s 7: Các câu h i tr c nghi m tích phân 30 Ph l c 36 Trang 2CHUYÊN ð :”CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN” GV: NGUY N DUY KHÔII. NGUYÊN HÀM:I.1. ð NH NGHĨA NGUYÊN HÀM: Hàm s F(x) ñư c g i là nguyên hàm c a hàm s f(x) trên (a;b) n u v i m ix∈(a;b): F’(x) = f(x) VD1: a) Hàm s F(x) = x3 là nguyên hàm c a hàm s f(x) = 3x2 trên R 1 b) Hàm s F(x) = lnx là nguyên hàm c a hàm s f(x) = trên (0;+∞) xI.2. ð NH LÝ: N u F(x) là m t nguyên hàm c a hàm s f(x) trên (a;b) thì: a) V i m i h ng s C, F(x) + C cũng là m t nguyên hàm c a f(x) trên kho ng ñó. b) Ngư c l i, m i nguyên hàm c a hàm s f(x) trên kho ng (a;b) ñ u có th vi tdư i d ng F(x) + C v i C là m t h ng s . Theo ñ nh lý trên, ñ tìm t t c các nguyên hàm c a hàm s f(x) thì ch c n tìm m tnguyên hàm nào ñó c a nó r i c ng vào nó m t h ng s C. T p h p các nguyên hàm ...
Tìm kiếm theo từ khóa liên quan:
phương pháp tính tích phân tính diện tích hình phẳng thể tích khối tròn xoay giải tích lý thuyết hàm lý thuyết phương trình vi phânTài liệu có liên quan:
-
Khóa luận tốt nghiệp: Nguyên lý tác dụng tối thiểu trong vật lý
52 trang 80 0 0 -
Giáo trình Giải tích - Giáo trình lý thuyết và bài tập có hướng dẫn (Tập 1): Phần 2
234 trang 76 0 0 -
9 trang 51 0 0
-
Giáo trình Giải tích - Giáo trình lý thuyết và bài tập có hướng dẫn (Tập 2): Phần 1
141 trang 48 0 0 -
Đề thi thử tốt nghiệp THPT năm 2023 môn Toán có đáp án - Trường THPT Quế Võ 1, Bắc Ninh
31 trang 42 0 0 -
Bài giảng Toán cao cấp 2 (Phần Giải tích): Bài 2 - Nguyễn Phương
54 trang 41 0 0 -
§7. CÁC TÍNH CHẤT CỦA DÃY SỐ HỘI TỤ
7 trang 37 0 0 -
DÀN BÀI TÓM TẮT NỘI DUNG GIẢI TÍCH HÀM MỘT BIẾN
6 trang 36 0 0 -
Giáo trình Giải tích - Giáo trình lý thuyết và bài tập có hướng dẫn (Tập 1): Phần 1
236 trang 36 0 0 -
Bài giảng Toán cao cấp C1: Chương 4 - Phan Trung Hiếu (2018)
15 trang 34 0 0