ĐÁP ÁN VÀ ĐỀ THI THỬ ĐẠI HỌC - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 18
Số trang: 3
Loại file: doc
Dung lượng: 197.50 KB
Lượt xem: 11
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo đề thi - kiểm tra đáp án và đề thi thử đại học - trường thpt nguyễn huệ - đắk lắk - đề số 18, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
ĐÁP ÁN VÀ ĐỀ THI THỬ ĐẠI HỌC - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 18 SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐẮK LẮK ĐỀ THI THỬ ĐẠI HỌC TRƯỜNG THPT NGUYỄN HUỆ MÔN TOÁN NĂM 2012 - 2013 Thời gian làm bài: 180 phút.A. PHẦN CHUNG ( Dành cho tất cả các thí sinh)Câu I (2 điểm). Cho hàm số y = x3 – 3x + 2 (C) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số. 2. Tìm tọa độ điểm M thuộc đường thẳng (d) có phương trình y = - 3x + 2 sao cho từ M kẻ được hai tiếp tuyến đến đồ thị (C) và hai tiếp tuyến đó vuông góc với nhau.Câu II (2 điểm) x2 + 2 + y2 + 3 + x + y = 5 1. Giải hệ phương trình: x2 + 2 + y2 + 3 − x − y = 2 2. Giải phương trình. 1 + sin x – cos x – sin 2x + cos 2x = 0 1 dxCâu III (1 điểm). Tính tích phân: ∫ 0 1+ 1− x 2 ᄋCâu IV (1 điểm). Cho khối chóp S.ABC có SA = a, SB = b, SC = c, ASB = 600 , BSC = 900 , ᄋ ᄋ CSA = 120 . Tính thể tích khối chóp S.ABC. 0Câu V (1 điểm). Cho ba số dương a, b, c thỏa mãn điều kiện : ab + bc + ca = 2abc. 1 1 1 1 Chứng minh rằng: + + 2 ≥ a (2a − 1) 2 b(2b − 1) 2 c(2c − 1) 2B. PHẦN TỰ CHỌN ( Mỗi thí sinh chỉ chọn một trong hai phần: Phần 1 hoặc Phần 2)Phần 1:Câu VI a (2 điểm) 1. Trong mặt phẳng tọa độ Oxy cho đường thẳng ( ∆ ): x + y – 1 = 0, các điểm A( 0; - 1), B(2;1). Tứ giác ABCD là hình thoi có tâm nằm trên ( ∆ ). Tịm tọa độ các điểm C, D. 2. Trong không gian tọa độ Oxyz cho điểm A(0;0;2) và đường thẳng ( ∆ ) có phương trình tham số: x = 0; y = t; z = 2. Điểm M di động trên trục hoành, điểm N di động trên ( ∆ ) sao cho: OM + AN = MN. Chứng minh đường thẳng MN tiếp xúc với một mặt cầu cố định.Câu VII a (1 điểm). Tìm các giá trị của a thỏa mãn: 3x + (a – 1).2x + (a – 1) > 0, ∀x ∈ R .Phần 2:Câu VI b (2 điểm) 5 1 1. Trong mặt phẳng tọa độ Oxy cho tam giác ABC trọng tâm G( ;− ), đường tròn đi qua 3 3 trung điểm các cạnh có phương trình x2 + y2 – 2x + 4y = 0. Hãy tìm phương trình đường tròn ngoại tiếp tam giác ABC. 2. Trong không gian tọa độ Oxyz cho hai điểm A(1; - 2; 3), B(2; - 1;2) và đường thẳng ( ∆ ): x y −1 z − 6 = = . Tìm tọa độ của điểm M trên ( ∆ ) sao cho diện tích tam giác MAB nhỏ 1 2 3 nhất. z −1 z − 2i Câu VII b (1 điểm). Tìm số phức z thỏa mãn đồng thời hai điều kiện: = 1, = 2. z −3 z+i ---------------------Hết--------------------- HƯỚNG DẪNCâu I: 1. Tự làm. 2. Gọi M(a;b) là điểm cần tìm. M thuộc (d) nên b = -3a + 2. Tiếp tuyến của đồ thị ( C) tại điểm (x0;y0) là: y = (3x02 – 3)(x – x0) + x03 – 3x0 +2. Tiếp tuyến đi qua M(a;b) ⇔ - 3a + 2 = (3x02 – 3)( a – x0) + x03 – 3x0 + 2 ⇔ 2x03 – 3ax02 = 0 ⇔ x0 = 0 hoặc x0 = 3a/2.. 27 a 2 Có hai tiếp tuyến đi qua M với hệ số góc là k1 = f ’(0) = -3 và k2 =f ‘(3a/2) = -3. 4 2 10 Hai tiếp tuyến này vuông góc với nhau ⇔ k1.k2 = - 1 ⇔ a2 = 40/81 ⇔ a = ± . 9 2 10 2 10 Vậy có hai điểm thỏa mãn đề bài là: M( ± ; + 2 ). 9 3Câu II: 1. Cộng và trừ từng vế hai phương trình của hệ ta được hệ tương đương: 2 7 3 1 x + 2 + y2 + 3 = y = 2 − x ( x; y ) = ( 2 ;1) 2 ⇔ ⇔ …⇔ x + y = 3 3 x + 2 + ( − x) + 3 = 2 2 7 ( x; y ) = ( 17 ; 13 ) 2 2 2 20 20 2. Phương trình ⇔ ( 1 – sin2x) + ( sinx – cosx) + ( cos x – sin x) = 0 2 2 ⇔ ( sinx – cosx).[(sinx – cosx) + 1 – (sinx + cosx)] = 0 ⇔ ( sinx – cosx).( 1 – 2cosx) = 0 1 π π ⇔ tan x = 1;cos x = ⇔ x = + k .π ; x = + l.π ( k , l ᄋ ) ( k,l ∈ Z). 2 4 3Câu III: ...
Nội dung trích xuất từ tài liệu:
ĐÁP ÁN VÀ ĐỀ THI THỬ ĐẠI HỌC - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 18 SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐẮK LẮK ĐỀ THI THỬ ĐẠI HỌC TRƯỜNG THPT NGUYỄN HUỆ MÔN TOÁN NĂM 2012 - 2013 Thời gian làm bài: 180 phút.A. PHẦN CHUNG ( Dành cho tất cả các thí sinh)Câu I (2 điểm). Cho hàm số y = x3 – 3x + 2 (C) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số. 2. Tìm tọa độ điểm M thuộc đường thẳng (d) có phương trình y = - 3x + 2 sao cho từ M kẻ được hai tiếp tuyến đến đồ thị (C) và hai tiếp tuyến đó vuông góc với nhau.Câu II (2 điểm) x2 + 2 + y2 + 3 + x + y = 5 1. Giải hệ phương trình: x2 + 2 + y2 + 3 − x − y = 2 2. Giải phương trình. 1 + sin x – cos x – sin 2x + cos 2x = 0 1 dxCâu III (1 điểm). Tính tích phân: ∫ 0 1+ 1− x 2 ᄋCâu IV (1 điểm). Cho khối chóp S.ABC có SA = a, SB = b, SC = c, ASB = 600 , BSC = 900 , ᄋ ᄋ CSA = 120 . Tính thể tích khối chóp S.ABC. 0Câu V (1 điểm). Cho ba số dương a, b, c thỏa mãn điều kiện : ab + bc + ca = 2abc. 1 1 1 1 Chứng minh rằng: + + 2 ≥ a (2a − 1) 2 b(2b − 1) 2 c(2c − 1) 2B. PHẦN TỰ CHỌN ( Mỗi thí sinh chỉ chọn một trong hai phần: Phần 1 hoặc Phần 2)Phần 1:Câu VI a (2 điểm) 1. Trong mặt phẳng tọa độ Oxy cho đường thẳng ( ∆ ): x + y – 1 = 0, các điểm A( 0; - 1), B(2;1). Tứ giác ABCD là hình thoi có tâm nằm trên ( ∆ ). Tịm tọa độ các điểm C, D. 2. Trong không gian tọa độ Oxyz cho điểm A(0;0;2) và đường thẳng ( ∆ ) có phương trình tham số: x = 0; y = t; z = 2. Điểm M di động trên trục hoành, điểm N di động trên ( ∆ ) sao cho: OM + AN = MN. Chứng minh đường thẳng MN tiếp xúc với một mặt cầu cố định.Câu VII a (1 điểm). Tìm các giá trị của a thỏa mãn: 3x + (a – 1).2x + (a – 1) > 0, ∀x ∈ R .Phần 2:Câu VI b (2 điểm) 5 1 1. Trong mặt phẳng tọa độ Oxy cho tam giác ABC trọng tâm G( ;− ), đường tròn đi qua 3 3 trung điểm các cạnh có phương trình x2 + y2 – 2x + 4y = 0. Hãy tìm phương trình đường tròn ngoại tiếp tam giác ABC. 2. Trong không gian tọa độ Oxyz cho hai điểm A(1; - 2; 3), B(2; - 1;2) và đường thẳng ( ∆ ): x y −1 z − 6 = = . Tìm tọa độ của điểm M trên ( ∆ ) sao cho diện tích tam giác MAB nhỏ 1 2 3 nhất. z −1 z − 2i Câu VII b (1 điểm). Tìm số phức z thỏa mãn đồng thời hai điều kiện: = 1, = 2. z −3 z+i ---------------------Hết--------------------- HƯỚNG DẪNCâu I: 1. Tự làm. 2. Gọi M(a;b) là điểm cần tìm. M thuộc (d) nên b = -3a + 2. Tiếp tuyến của đồ thị ( C) tại điểm (x0;y0) là: y = (3x02 – 3)(x – x0) + x03 – 3x0 +2. Tiếp tuyến đi qua M(a;b) ⇔ - 3a + 2 = (3x02 – 3)( a – x0) + x03 – 3x0 + 2 ⇔ 2x03 – 3ax02 = 0 ⇔ x0 = 0 hoặc x0 = 3a/2.. 27 a 2 Có hai tiếp tuyến đi qua M với hệ số góc là k1 = f ’(0) = -3 và k2 =f ‘(3a/2) = -3. 4 2 10 Hai tiếp tuyến này vuông góc với nhau ⇔ k1.k2 = - 1 ⇔ a2 = 40/81 ⇔ a = ± . 9 2 10 2 10 Vậy có hai điểm thỏa mãn đề bài là: M( ± ; + 2 ). 9 3Câu II: 1. Cộng và trừ từng vế hai phương trình của hệ ta được hệ tương đương: 2 7 3 1 x + 2 + y2 + 3 = y = 2 − x ( x; y ) = ( 2 ;1) 2 ⇔ ⇔ …⇔ x + y = 3 3 x + 2 + ( − x) + 3 = 2 2 7 ( x; y ) = ( 17 ; 13 ) 2 2 2 20 20 2. Phương trình ⇔ ( 1 – sin2x) + ( sinx – cosx) + ( cos x – sin x) = 0 2 2 ⇔ ( sinx – cosx).[(sinx – cosx) + 1 – (sinx + cosx)] = 0 ⇔ ( sinx – cosx).( 1 – 2cosx) = 0 1 π π ⇔ tan x = 1;cos x = ⇔ x = + k .π ; x = + l.π ( k , l ᄋ ) ( k,l ∈ Z). 2 4 3Câu III: ...
Tìm kiếm theo từ khóa liên quan:
đề thi thử môn toán 2013 ôn thi đại học môn toán tài liệu toán 12 bài tập toán 12 đề thi thử đại học 2013 chuyên môn toán 12Tài liệu có liên quan:
-
THI CHỌN HỌC SINH GIỎI LỚP 12 THPT MÔN TOÁN TỈNH BÌNH ĐỊNH NĂM 2006
1 trang 98 0 0 -
Giáo án Giải tích 12 ban tự nhiên : Tên bài dạy : CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH BẬC HAI
10 trang 96 0 0 -
150 đề thi thử đại học môn Toán
155 trang 54 0 0 -
GIÁO TRÌNH MATLAB (phụ lục lệnh và hàm)
8 trang 53 0 0 -
PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH CHỨA CĂN
3 trang 46 0 0 -
9 trang 45 0 0
-
Đề cương ôn thi THPT QG môn Toán năm 2022 - Nguyễn Hoàng Việt
193 trang 39 0 0 -
Một số phương pháp và bài tập giải phương trình vô tỷ
41 trang 37 0 0 -
Ôn tập Phương pháp tọa độ trong không gian
13 trang 35 0 0 -
Bài tập - Phương trình đường thẳng
7 trang 34 0 0