Danh mục

Đề thi và đáp án kỳ thi olympic toán

Số trang: 11      Loại file: pdf      Dung lượng: 180.61 KB      Lượt xem: 16      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Đề thi thử sẽ cung cấp những câu hỏi hay thú vị, mang tính chất tham khảo, rất có ích cho các bạn.
Nội dung trích xuất từ tài liệu:
Đề thi và đáp án kỳ thi olympic toánSÔÛ GIAÙO DUÏC & ÑAØO TAÏO ANGIANG COÄNG HOAØ XAÕ HOÄI CHUÛ NGHÓA VIEÄT NAMTröôøng THPT Chuyeân Thoaïi Ngoïc Haàu Ñoäc laäp – Töï do – Haïnh phuùc --------------------------------- ÑEÀ THI HOÏC SINH GIOÛI OLYMPIC ÑOÀNG BAÈNG SOÂNG CÖÛU LONG Naêm hoïc 2005 – 2006 Moân TOAÙN ( Thôøi gian laøm baøi : 180 phuùt ) Baøi 1 : ( 4 ñieåm ) Haõy tìm taát caû nhöõng ña thöùc P(x) sao cho thoaû maõn ñaúng thöùc sau : x P(x – 1) = (x – 26) P(x) Baøi 2 : ( 4 ñieåm ) Tìm taát caû caùc nghieäm nguyeân cuûa phöông trình : x3 + (x + 1)3 + ... + (x + 7)3 = y3 (1) Baøi 3 : ( 4 ñieåm )   u0  1 Cho soá a > 2 vaø daõy soá (u n) xaùc ñònh bôûi : u1  a   u   un  2  u 2 (n  1)  n 1  un 1   2  n  Chöùng minh raèng : vôùi moïi k  N 1 1 1    u0 u1 u2 1 uk  1 2  2  a  a2  4  Baøi 4 : ( 4 ñieåm ) Cho hình bình haønh ABCD coù AB = a , AD = 1 , BAD   , tam giaùc ˆABD coù taát caû caùc goùc ñeàu nhoïn . Haõy chöùng minh raèng caùc hình troøn baùn kính baèng1 coù taâm laàn löôït laø A , B , C , D seõ phuû kín hình bình haønh naøy neáu :cos   3 sin   a Baøi 5 : ( 4 ñieåm ) Goïi r vaø R laàn löôït laø baùn kính cuûa hình caàu noäi tieáp vaø ngoaïi tieáp moäthình choùp R töù giaùc ñeàu . Tìm giaù trò nhoû nhaát cuûa tæ soá r ------------------------------------------------ Baøi 1 : ( 4 ñieåm ) Haõy tìm taát caû nhöõng ña thöùc P(x) sao cho thoaû maõn ñaúng thöùc sau : x P(x – 1) = (x – 26) P(x) Ñaùp aùn Cho P(x) laø ña thöùc thoaû ñieàu kieän baøi toaùn . Hieån nhieân noù chia heát cho x . Nghóa laø : P(x) = x P1(x) , ôû ñaây P1(x) laø moät ña thöùc .(0,5ñ) Khi ñoù , P(x – 1) = (x – 1) P1(x – 1) , nghóa laø : x (x – 1) P1(x – 1) = x P(x – 1) = (x – 26) P(x)(0,5ñ) Töø ñaây suy ra P(x) chia heát cho caû (x – 1) , nghóa laø P(x) = x (x – 1) P2(x)(0,5ñ) Töø ñaây ta laïi nhaän ñöôïc : P(x – 1) = (x – 1) (x – 2) P2(x – 1)(0,5ñ) Hoaëc laø x (x – 1) (x – 2) P2(x – 1) = (x – 26) . P(x)(0,5ñ) Töø ñaây ta suy ra P(x) chia heát cho (x – 2) . Tieáp tuïc theo tinh thaàn ñoù , cuoái cuøng ta nhaän ñöôïc : P(x) = x (x – 1) (x – 2) ... (x – 25) . P26(x)(0,5ñ) Khi ñoù , töø ñieàu kieän baøi toaùn suy ra : x (x – 1) (x – 2) ....(x – 26) . P26(x – 1) = (x – 26) x (x – 1)...(x – 25) . P26(x) Suy ra : P26(x – 1) = P26(x)(0,5ñ) Vaø vaäy P26(x) = c ( c : haèng soá ) Vaäy P(x) = c . x (x – 1) (x – 2) ... (x – 25)(0,5ñ) Kieåm tra laïi ta thaáy nhaän . ------------------------------------------------- Baøi 2 : ( 4 ñieåm ) Tìm taát caû caùc nghieäm nguyeân cuûa phöông trình : x3 + (x + 1)3 + ... + (x + 7)3 = y3 (1) Ñaùp aùn Ñaët P(x) = x3 + (x + 1)3 + ... + (x + 7)3 = 8x3 + 84x2 + 420x + 784 Xeùt x  0 , ta coù : (2x + 7)3 = 8x3 + 84x2 + 294x + 343 < P(x) < 8x 3 + 120x2 + 600x + 1000 = (2x +10)3 (0,5ñ)  2x + 7 < y < 2x + 10  y = 2x + 8 hoaëc y = 2x + 9(0,5ñ) Vì caû hai phöông trình : P(x) – (2x + 8)3 = 0  – 12x2 + 36x + 272 = 0 P(x) – ...

Tài liệu được xem nhiều:

Tài liệu có liên quan: