
Đề thi vào lớp 10 chuyên môn toán
Số trang: 51
Loại file: pdf
Dung lượng: 516.82 KB
Lượt xem: 7
Lượt tải: 0
Xem trước 10 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Mấy năm gần đây nhu cầu thi vào các lớp 10 chuyên của học sinh ngày càng nhiều, điều các học sinh quan tâm là cách thức ra đề cũng như yêu cầu kiến thức của từng trường như thế nào. Để đáp ứng nhu cầu đó chung tôi xin giới thiệu tập tài liệu tham khảo: bộ đề thi tuyển sinh vào các lớp 10 trường chuyên trên địa bàn thành phố HCM.
Nội dung trích xuất từ tài liệu:
Đề thi vào lớp 10 chuyên môn toán www.MATHVN.com Nguyễn Tăng Vũ Đề thi vào lớp 10 ĐỀ TOÁN THI VÀO LỚP 10 Mấy năm gần đây nhu cầu thi vào các lớp 10 chuyên của học sinh ngày càng nhiều. Điều các học sinh quan tâm là cách thức ra đề cũng như yêu cầu kiến thức của từng trường như thế nào. Để đáp ứng nhu cầu đó chúng tôi xin giới thiệu tập tài liệu tham khảo: Bộ đề thi tuyển sinh vào các lớp 10 trường chuyên trên địa bàn thành phố Hồ Chí Minh. Đây là bộ đề thi môn toán tuyển sinh vào lớp 10 các trường phổ thông trung học chuyên trên phạm vi thành phố. Trong đó chủ yếu là các đề thi vào các trường chuyên Lê Hồng Phong, Trần Đại Nghĩa, trường Phổ Thông Năng Khiếu – ĐHQG TPHCM và Lớp chuyên toán của trường Trung Học Thực Hành – ĐHSP TPHCM. Kể từ năm học 2006 – 2007 thì đề thi vào 10 lớp bình thường cũng như các lớp chuyên của trường LHP và TĐN là đề thi chung do thành phố ra, còn các trường THTH và PTNK vẫn tuyển riêng. Bộ đề này chỉ gồm các đề thi bắt đầu từ năm học 2001 – 2002 đến nay. Hi vọng rằng đây là bộ tài liệu tham khảo hữu ích cho các em học sinh chuẩn bị thi vào các lớp 10 chuyên cũng như các thầy cô giáo quan tâm đến kì thi này. 1www.mathvn.com www.MATHVN.com Nguyễn Tăng Vũ Đề thi vào lớp 10 1. Thi vào trường Lê Hồng Phong Năm học 2001 – 2002 Đề thi chung Bài 1: Cho phương trình a) Định m để phương trình có nghiệm b) Định m để phương trình có hai nghiệm x1, x2 thoả mãn: Bài 2: Chứng minh các bất đẳng thức sau: a) với mọi b) c) với mọi a, b, c, d, e Bài 3: Giải các phương trình sau: a) b) Bài 4: Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O và có trực tâm là H. Lấy điểm M thuộc cung nhỏ BC . a) Xác định vị trí điểm M sao cho tứ giác BHCM là một hình bình hành b) Với M lấy bất kì thuộ cung nhỏ BC , gọi N, E lần lượt là các điểm đối xứng của M qua AB, AC. Chứng minh rằng N, H, E thẳng hàng c) Xác định vị trí của M thuộc cung nhỏ BC sao cho NE có độ dài lớn nhất Bài 5: Cho đường tròn cố định tâm O, bán kính bằng 1. Tam giác ABC thay đổi và luôn ngoại tiếp đường tròn (O). Một đường thẳng đi qua tâm O 2www.mathvn.com www.MATHVN.com Nguyễn Tăng Vũ Đề thi vào lớp 10 và cắt các cạnh AB, AC lần lượt tại M, N. Xác định giá trị nhỏ nhất của diện tích tam giác AMN. Năm học 2002 – 2003 Đề thi chung Bài 1: Rút gọn các biểu: a) b) Bài 2: Cho phương trình: a) Chứng minh rằng phương trình có hai nghiệm phân biệt b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm giá trị nhỏ nhất của biểu thức Bài 3: a) Chứng minh: b) Chứng minh: c) Cho x, y > 0 và x + y = 1. Chứng minh rằng: Bài 4: Giải các phương trình sau: a) b) Bài 5: Cho đường tròn (O; R) và đường thẳng (d) không qua O cắt đường tròn (O) tại hai điểm A, B. Từ một điểm di động M trên đường thẳng (d) và ở ngoài (O), ta vẽ hai tiếp tuyến MN, MP với đường tròn (O) (N, P là hai tiếp điểm) a) Chứng minh rằng 3www.mathvn.com www.MATHVN.com Nguyễn Tăng Vũ Đề thi vào lớp 10 b) Chứng minh đường tròn ngoại tiếp tam giác MNP đi qua một điểm cố định khi M lưu động trên đường thẳng (d) c) Xác định vị trí điểm M trên đường thẳng (d) sao cho tứ giác MNOP là một hình vuông d) Chứng minh rằng tâm I của đường tròn nội tiếp tam giác MNP lưu động trên một đường cố định khi M lưu động trên (d) Đề thi vào lớp chuyên toán Bài 1: Tìm các giá trị của m để phương trình sau có nghiệm và tính các nghiệm ấy theo m: Bài 2: Phân tích đa thức thành nhân tử: A = x10 + x5 + 1 Bài 3: Giải các phương trình và hệ phương trình: Bài 4: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức Bài 5: Cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn (O) và có AB < AC. Lấy điểm M thuộc cuung BC không chứa điểm A của đường trònh (O). Vẽ MH vuông góc BC, MK vuông góc CA, MI vuông góc AB( H thuộc BC, K thuộc AC, I thuộc AB). Chứng minh Bài 6: Cho tam giác ABC, giả sử các đường phân giác trong và phân giác ngoài của góc A của tam giác ABC lần lượt cắt đường thẳng BC tại D, E 4www.mathvn.com www.MATHVN.com Nguyễn Tăng Vũ Đề thi vào lớp 10 và có AD = AE. Chứng minh rằng , với R là bán kính đường tròn ngoại tiếp tam giác ABC. Năm học 2003 – 2004 Đề thi chung Bài 1: Cho phương trình: a) Tìm m để phương trình có hai nghiệm phân biệt đều âm ...
Nội dung trích xuất từ tài liệu:
Đề thi vào lớp 10 chuyên môn toán www.MATHVN.com Nguyễn Tăng Vũ Đề thi vào lớp 10 ĐỀ TOÁN THI VÀO LỚP 10 Mấy năm gần đây nhu cầu thi vào các lớp 10 chuyên của học sinh ngày càng nhiều. Điều các học sinh quan tâm là cách thức ra đề cũng như yêu cầu kiến thức của từng trường như thế nào. Để đáp ứng nhu cầu đó chúng tôi xin giới thiệu tập tài liệu tham khảo: Bộ đề thi tuyển sinh vào các lớp 10 trường chuyên trên địa bàn thành phố Hồ Chí Minh. Đây là bộ đề thi môn toán tuyển sinh vào lớp 10 các trường phổ thông trung học chuyên trên phạm vi thành phố. Trong đó chủ yếu là các đề thi vào các trường chuyên Lê Hồng Phong, Trần Đại Nghĩa, trường Phổ Thông Năng Khiếu – ĐHQG TPHCM và Lớp chuyên toán của trường Trung Học Thực Hành – ĐHSP TPHCM. Kể từ năm học 2006 – 2007 thì đề thi vào 10 lớp bình thường cũng như các lớp chuyên của trường LHP và TĐN là đề thi chung do thành phố ra, còn các trường THTH và PTNK vẫn tuyển riêng. Bộ đề này chỉ gồm các đề thi bắt đầu từ năm học 2001 – 2002 đến nay. Hi vọng rằng đây là bộ tài liệu tham khảo hữu ích cho các em học sinh chuẩn bị thi vào các lớp 10 chuyên cũng như các thầy cô giáo quan tâm đến kì thi này. 1www.mathvn.com www.MATHVN.com Nguyễn Tăng Vũ Đề thi vào lớp 10 1. Thi vào trường Lê Hồng Phong Năm học 2001 – 2002 Đề thi chung Bài 1: Cho phương trình a) Định m để phương trình có nghiệm b) Định m để phương trình có hai nghiệm x1, x2 thoả mãn: Bài 2: Chứng minh các bất đẳng thức sau: a) với mọi b) c) với mọi a, b, c, d, e Bài 3: Giải các phương trình sau: a) b) Bài 4: Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O và có trực tâm là H. Lấy điểm M thuộc cung nhỏ BC . a) Xác định vị trí điểm M sao cho tứ giác BHCM là một hình bình hành b) Với M lấy bất kì thuộ cung nhỏ BC , gọi N, E lần lượt là các điểm đối xứng của M qua AB, AC. Chứng minh rằng N, H, E thẳng hàng c) Xác định vị trí của M thuộc cung nhỏ BC sao cho NE có độ dài lớn nhất Bài 5: Cho đường tròn cố định tâm O, bán kính bằng 1. Tam giác ABC thay đổi và luôn ngoại tiếp đường tròn (O). Một đường thẳng đi qua tâm O 2www.mathvn.com www.MATHVN.com Nguyễn Tăng Vũ Đề thi vào lớp 10 và cắt các cạnh AB, AC lần lượt tại M, N. Xác định giá trị nhỏ nhất của diện tích tam giác AMN. Năm học 2002 – 2003 Đề thi chung Bài 1: Rút gọn các biểu: a) b) Bài 2: Cho phương trình: a) Chứng minh rằng phương trình có hai nghiệm phân biệt b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm giá trị nhỏ nhất của biểu thức Bài 3: a) Chứng minh: b) Chứng minh: c) Cho x, y > 0 và x + y = 1. Chứng minh rằng: Bài 4: Giải các phương trình sau: a) b) Bài 5: Cho đường tròn (O; R) và đường thẳng (d) không qua O cắt đường tròn (O) tại hai điểm A, B. Từ một điểm di động M trên đường thẳng (d) và ở ngoài (O), ta vẽ hai tiếp tuyến MN, MP với đường tròn (O) (N, P là hai tiếp điểm) a) Chứng minh rằng 3www.mathvn.com www.MATHVN.com Nguyễn Tăng Vũ Đề thi vào lớp 10 b) Chứng minh đường tròn ngoại tiếp tam giác MNP đi qua một điểm cố định khi M lưu động trên đường thẳng (d) c) Xác định vị trí điểm M trên đường thẳng (d) sao cho tứ giác MNOP là một hình vuông d) Chứng minh rằng tâm I của đường tròn nội tiếp tam giác MNP lưu động trên một đường cố định khi M lưu động trên (d) Đề thi vào lớp chuyên toán Bài 1: Tìm các giá trị của m để phương trình sau có nghiệm và tính các nghiệm ấy theo m: Bài 2: Phân tích đa thức thành nhân tử: A = x10 + x5 + 1 Bài 3: Giải các phương trình và hệ phương trình: Bài 4: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức Bài 5: Cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn (O) và có AB < AC. Lấy điểm M thuộc cuung BC không chứa điểm A của đường trònh (O). Vẽ MH vuông góc BC, MK vuông góc CA, MI vuông góc AB( H thuộc BC, K thuộc AC, I thuộc AB). Chứng minh Bài 6: Cho tam giác ABC, giả sử các đường phân giác trong và phân giác ngoài của góc A của tam giác ABC lần lượt cắt đường thẳng BC tại D, E 4www.mathvn.com www.MATHVN.com Nguyễn Tăng Vũ Đề thi vào lớp 10 và có AD = AE. Chứng minh rằng , với R là bán kính đường tròn ngoại tiếp tam giác ABC. Năm học 2003 – 2004 Đề thi chung Bài 1: Cho phương trình: a) Tìm m để phương trình có hai nghiệm phân biệt đều âm ...
Tìm kiếm theo từ khóa liên quan:
đề ôn thi toán học luyện thi toán học ôn thi đại học môn toán bài tập toán học 10 đề thi toán học 10 tài liệu toán học 10Tài liệu có liên quan:
-
Các phương pháp tìm nhanh đáp án môn Toán: Phần 2
166 trang 212 0 0 -
Tài liệu ôn luyện chuẩn bị cho kỳ thi THPT Quốc gia môn Toán: Phần 2
135 trang 86 0 0 -
150 đề thi thử đại học môn Toán
155 trang 54 0 0 -
GIÁO TRÌNH MATLAB (phụ lục lệnh và hàm)
8 trang 53 0 0 -
PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH CHỨA CĂN
3 trang 46 0 0 -
9 trang 44 0 0
-
Một số phương pháp và bài tập giải phương trình vô tỷ
41 trang 36 0 0 -
Các phương pháp tìm nhanh đáp án môn Toán: Phần 1
158 trang 35 0 0 -
Bài tập - Phương trình đường thẳng
7 trang 34 0 0 -
82 trang 34 0 0
-
Phương trình đường thẳng trong không gian
14 trang 31 0 0 -
Ôn thi tốt nghiệp, Đại học, Cao đẳng phần hàm số và đồ thị
24 trang 29 0 0 -
68 trang 29 0 0
-
Tài liệu tham khảo: ĐƯỜNG TRÒN
8 trang 28 0 0 -
Luyện thi Đại học - Chuyên đề Cực trị hàm số
12 trang 28 0 0 -
Đề kiểm tra ôn thi đại học môn Toán
20 trang 27 0 0 -
ĐỀ THI THỬ MÔN TOÁN NĂM 2011 - ĐỀ SỐ 15
8 trang 27 0 0 -
VECTƠ VÀ CÁC PHÉP TOÁN TRONG KHÔNG GIAN TỌA ĐỘ
1 trang 27 0 0 -
Bài toán về cực trị - GV. Nguyễn Vũ Minh
8 trang 26 0 0 -
Các chuyên đề luyện thi Đại học - Trần Anh Tuấn
145 trang 26 0 0