Danh mục

500 Bài toán bất đẳng thức - Cao Minh Quang

Số trang: 49      Loại file: pdf      Dung lượng: 644.80 KB      Lượt xem: 59      Lượt tải: 0    
Xem trước 5 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tổng hợp 500 bài toán bất đẳng thức, giúp các bạn hệ thống kiến thức về bất đẳng thức trong toán học và nắm vứng kiến thức để giải các bài tập, giúp bạn học tốt hơn.
Nội dung trích xuất từ tài liệu:
500 Bài toán bất đẳng thức - Cao Minh Quang 500Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang ♦♦♦♦♦ Vĩnh Long, Xuân M u Tý, 2008500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 500 Bài Toán B t ð ng Th c Ch n L c ♦♦♦♦♦1. Cho a, b, c là các s th c dương. Ch ng minh r ng 2 2 2 3 2 a 2 + (1− b) + b 2 + (1− c) + c 2 + (1− a ) ≥ . 2 Komal2. [ Dinu Serbănescu ] Cho a, b, c ∈ (0,1) . Ch ng minh r ng abc + (1− a )(1− b)(1− c) < 1 . Junior TST 2002, Romania3. [ Mircea Lascu ] Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ngminh r ng b+c c +a a +b + + ≥ a + b + c + 3. a b c Gazeta Matematică4. N u phương trình x 4 + ax3 + 2 x 2 + bx + 1 = 0 có ít nh t m t nghi m th c, thì a 2 + b2 ≥ 8 . Tournament of the Towns, 19935. Cho các s th c x, y, z th a mãn ñi u ki n x 2 + y 2 + z 2 = 1 . Hãy tìm giá tr l n nh t c abi u th c x3 + y 3 + z 3 − 3xyz .6. Cho a, b, c, x, y, z là các s th c dương th a mãn ñi u ki n x + y + z = 1 . Ch ng minhr ng ax + by + cz + 2 ( xy + yz + zx )(ab + bc + ca ) ≤ a + b + c . Ukraine, 20017. [ Darij Grinberg] Cho a, b, c là các s th c dương. Ch ng minh r ng a b c 9 + + ≥ . (b + c) 2 (c + a ) 2 2 ( a + b) 4 (a + b + c)8. [ Hojoo Lee ] Cho a, b, c ≥ 0 . Ch ng minh r ng a4 + a2b2 + b4 + b4 + b2c2 + c4 + c4 + c2a2 + a4 ≥ a 2a2 + bc + b 2b2 + ca + c 2c2 + ab . Gazeta Matematică9. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 2 . Ch ng minh r ng a 3 + b 3 + c3 ≥ a b + c + b c + a + c a + b . JBMO 2002 Shortlist10. [ Ioan Tomescu ] Cho x, y, z là các s th c dương. Ch ng minh r ng xyz 1 ≤ 4. (1 + 3x)( x + 8 y )( y + 9 z )( z + 6) 72500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang Gazeta Matematică11. [ Mihai Piticari, Dan Popescu ] Cho a, b, c là các s th c dương th a mãn ñi u ki na + b + c = 1 . Ch ng minh r ng 5 (a 2 + b 2 + c 2 ) ≤ 6 (a 3 + b 3 + c3 ) +1 .12. [ Mircea Lascu ] Cho x1 , x2 ,..., xn ∈ ℝ , n ≥ 2, a > 0 sao cho a2 x1 + x2 + ... + xn = a, x12 + x2 + ... + xn ≤ 2 2 . n −1 Ch ng minh r ng  2a  xi ∈ 0,  , i = 1, 2,..., n .  n 13. [ Adrian Zahariuc ] Cho a, b, c ∈ (0,1) . Ch ng minh r ng b a c b a c + + ≥1 . 4b c − c a 4c a − a b 4a b − b c14. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc ≤ 1 . Ch ng minh r ng a b c + + ≥ a +b+c . b c a15. [ Vasile Cirtoaje, Mircea Lascu ] Cho a, b, c, x, y, z là các s th c dương th a mãn ñi uki n a + x ≥ b + y ≥ c + z , a + b + c = x + y + z . Ch ng minh r ng ay + bx ≥ ac + xz .16. [ Vasile Cirtoaje, Mircea Lascu ] Cho a, b, c là các s th c dương th a mãn ñi u ki nabc = 1 . Ch ng minh r ng ...

Tài liệu được xem nhiều:

Tài liệu có liên quan: